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1 Introduction

Climate change is causing more frequent and intense storms that will continue to impact coastal
communities. Porous breakwaters have been investigated as an alternative to solid breakwaters
to minimise erosion and damage to coastline infrastructure, while permitting natural longshore
drift processes. In order to model the wave attenuation of a porous breakwater, a bulk porous
medium is usually modelled, yet it is unclear when the scale of the porous material influences
local surface wave dynamics and vorticity under the surface and therefore the reflection, trans-
mission and absorption coefficients of the structure. Here we investigate a highly-porous periodic
breakwater presented in Fig. 1, inspired by a cylindrical porous coating study to alleviate vor-
tex shedding by Arcondoulis et al (2023). A solid rectangular block with cylinder and square
sections are subtracted along the y-and z-axis, and the x-axis, respectively, to create pores with
comparable dimensions to wave amplitudes at higher wavenumbers achievable in a wave flume.

Figure 1: CAD images of an xz-plane slice of the periodic breakwater with 78% porosity.

We adopt the model developed by Sollitt & Cross (1972) to provide the governing equations
and boundary conditions. Their model is carefully constructed to provide a simplified linearised
description of the flow in terms of fundamental physical parameters and applies to flow in a
porous medium. A series of experiments were conducted in a wave flume using (i) wave gauges
to determine the reflection, transmission and absorption coefficients of the breakwater, (ii)
water surface photographs to record wave diffraction and (iii) time-resolved 3-D Particle Image
Velocimetry (PIV) at z ≤ −60 mm to observe turbulent dissipation at the breakwater walls.

2 Mathematical theory

Cartesian coordinates (x, z) are chosen with z directed upwards from the rest position of the
free surface of a fluid of depth d. We consider a surface-piercing breakwater structure occupying
|x| < a and −b < z < 0. Waves of angular frequency ω are normally-incident on the breakwater
from x = −∞ and are partially reflected and transmitted.



In the fluid region, there exists a velocity potential ϕ satisfying

∇2ϕ = 0 (1)
with

ϕz = 0, on z = −d, (2)

ϕz −Kϕ = 0, on z = 0, |x| > a (3)

where K = ω2/g and g represents acceleration due to gravity. Within the porous medium the
flow can also be represented by a velocity potential satisfying (1). The effect of the porous
medium is manifested in a modification to the classical Bernoulli’s equation. Thus, following
Sollitt & Cross (1972) the surface condition representing the combined kinematic and dynamic
boundary condition turns out to be expressed as

ϕz −K(S + if)ϕ = 0, on z = 0, |x| < a. (4)

Here, S = 1+ (1− ϵ)CM/ϵ in terms of an added inertia coefficient, CM , and the porosity, ϵ;
f is a damping parameter which must be determined iteratively by (12). Conditions matching
the fluid pressures and normal fluxes across the three submerged surfaces of the rectangular
breakwater also apply. Referring to Sollitt & Cross (1972) these are given by

ϕ(x,−b−) = (S + if)ϕ(x,−b+), ϕx(x,−b−) = ϵϕx(x,−b+), for |x| < a, (5)

ϕ(∓a∓, z) = (S + if)ϕ(∓a±, z), ϕx(∓a∓, z) = ϵϕx(∓a±, z), for −b < z < 0. (6)

It remains to specify conditions at infinity and so we write

ϕ(x, z) ∼

{
(eikx +Re−ikx)ψ0(z), x→ −∞
T eikxψ0(z), x→ ∞

(7)

where R and T are reflection and transmission coefficients, to be found. In (7) k is the real
positive root of the dispersion relation k tanh kd = K and ψ0(z) is the depth function associated

with propagating waves defined by ψ0(z) = N
−1/2
0 cosh k(z + d); N0 = 1

2(1 + sinh(2kd)/2kd) is
a normalising factor. The coefficient of absorption is defined to be η = 1−

(
|R|2 + |T |2

)
.

The mathematical solution involves first decomposing the problem into symmetric and an-
tisymmetric potentials, thus

ϕ(x, z) = 1
2(ϕ

s(x, z) + ϕa(x, z)) (8)

such that ϕs(x, z) = ϕs(−x, z), ϕa(x, z) = −ϕa(−x, z) are defined in −∞ < x < 0 with
ϕsx(0, z) = ϕa(0, z) = 0. Potentials in x < −a are expressed in terms of expansions involving the
standard water wave depth eigenfunctions {ψm(z),m = 0, 1, . . .}, but in −a < x < 0 we write

ϕs,a(x, z) =

∞∑
n=0

bs,an

{
cosκnx
sinκnx

}
Zn(z) (9)

where the upper/lower braced entries correspond to s, a (respectively). In (9), κn are the roots
of the dispersion relation

κn
[ϵ tanhκnb+ (S + if) tanhκn(d− b)]

[ϵ+ (S + if) tanhκnb tanhκn(d− b)]
= K(S + if) (10)

lying in the upper-half complex plane and ordered with increasing size of the imaginary parts
which is derived alongside the piecewise definition



Zn(z) =


coshκnz + (K/κn)(S + if) sinhκnz, −b < z < 0,

(S + if)
(coshκnb− (K/κn)(S + if) sinhκnb)

coshκn(d− b)
coshκn(z + d), −d < z < −b,

(11)

which accounts for the conditions (3), (4) and (5). Potentials and their derivatives are matched
across x = −a using (6) plus continuity of ϕ and ϕx across the fluid-fluid interface x = −a,
−d < z < −b. Both sides of the resulting equations are multiplied by ψm(z) m = 0, 1, . . . and
integrated over −d < z < 0 allowing each symmetric and antisymmetric problem to be reduced
to an infinite system of equations for the coefficients bs,an in (9) who values are subsequently
approximated by truncation. Approximations to |R|, |T | and η follow.

The value of f is determined iteratively from the requirement (Sollitt & Cross (1972)) that

fω =
ϵν

Kp
+

8

3π

ϵ2Cf

K
1/2
p

(∫ 0

−b

∫ a

−a
|∇ϕ|3dxdz

)/(∫ 0

−b

∫ a

−a
|∇ϕ|2dxdz

)
(12)

which follows from the linearisation of a turbulent drag term under the Lorentz principle of
equivalent work. In (12) ν is fluid viscosity Kp is permeability, Cf is a coefficient of turbulent
drag; f also depends on the incident wave amplitude, A.

3 Experiments and comparison with theory

Experiments were conducted in a 600 mm-wide wave flume in the COAST Laboratory at The
University of Plymouth. The mean water depth was d = 300 mm, and wave gauges were placed
at x = 500 mm and 300 mm to estimate |R|, and at x = 1600 mm and −1200 mm to estimate
|T |, where the upstream face is at x = 0 mm. Thirty equispaced wavenumbers were investigated
from kd ≈ 0.75 to 3.5 and the wave amplitude was set to 2A/λ ≤ 0.05.

We have not attempted to experimentally measure values of the parameters in (12), instead
choosing to sample parameters to determine if a fit to |R|, |T | and η can be manufactured. In
illustrative results shown in Fig. 2 we have used a/d = 0.13, b/d = 0.46, ϵ = 0.75, S = 1.6 and

νg1/2d1/2/Kp = 0.001, 8AgdCf/(3πK
1/2
p ψ0(0)) = 0.03. Although general trends are captured

at lower kd-values, the present theory is not able to reproduce experimental results beyond
kd ≈ 2.8. A possible explanation is that the Sollitt & Cross (1972) porous medium theory
is not appropriate for the periodic structured breakwater design. Instead, we believe that an
adaptation of the theory of Mei et al (2014), designed for turbulent dissipation in periodic struc-
tures, would give better agreement. This approach requires greater theoretical effort including
CFD simulations in fundamental cells and experimental parameterisation.

Figure 2: Comparison between experimental and theoretical values of |R|, |T | and η.



Figure 3: Interference pattern observed on the downstream water surface for kd ≈ 3.2.

Figure 4: Instant snapshots of (a) |Ωy| ≥ 2 (1/s) and (b) Q(c2p/A
2) = 105 − 106 at kd ≈ 3.2.

To explain some of the discrepancies at higher wavenumbers, three temporal stages of the
water surface during experiments at kd ≈ 3.2 are presented in Fig. 3, revealing local inter-
ference patterns at the downstream wall. The interference pattern travels further downstream
until the local pattern from each pore merges into a single wave front. Some PIV results
recorded at z ≤ −60 mm are presented in Figure 4. Isosurfaces of vorticity about the y-axis in
Fig. 4(a), Ωy, reveal alternating positive and negative vorticity at the downstream wall, and
therefore clear evidence of small-scale vortex shedding. The scale of this turbulent dissipation
due to the porous structure is of higher order and becomes significant at higher wavenumbers.
Shear observed at the upstream interface and base is exacerbated by the non-smooth walls.
The Q-criterion is non-dimensionalised by the phase velocity, cp and wave amplitude, A, and
is presented in Fig. 4(b). Vortical structures are recorded at the upstream surface due to
complex interaction of wave propagation and local reflections at the solid struts. Clearly, such
interactions are significant at smaller wave amplitudes and shorter wavelengths (i.e., higher
kd-values), due to the comparable order of magnitude of pore dimensions and wave amplitude.
Further analysis of the flow-field will be presented at the workshop, including kd ≈ 0.75 and 2.5.
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