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Abstract

This work centres on problems involving the in-
teraction of water waves with thin rigid or flex-
ible plates which can either be fixed or freely-
floating on the surface of the fluid. A Fourier
transform method is key to developing integral
equations can subsequently be efficiently solved
numerically using a Galerkin approach. A large
class of problems can be considered using this
approach, including scattering by rectangular
and rhomboidal-shaped plates and eigenvalue
problems for sloshing modes in ice holes.
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1 Introduction

The reflection and transmission of surface grav-
ity waves by a rigid plate or ‘dock’ on the surface
of a fluid is a classical problem in the study of
linearised water waves. For example, when the
plate covers the half-plane – the so-called semi-
infinite dock problem – an explicit expression
for the reflection coefficient can be found us-
ing the Wiener-Hopf technique (see [1]). For a
plate that is infinitely-long and of uniform con-
stant width – the so-called ‘finite dock problem’
– exact solutions are no longer possible and var-
ious techniques have been employed all leading
to approximations of the reflection and trans-
mission. See for example, [2], [3].

In §2 we outline how a Fourier transform
method may be applied to this two-dimensional
scattering problem that results efficient and ac-
curate numerical results. We do not claim that
this approach is superior to existing methods,
but it does allow a number of extensions to be
considered and some of these are outlined in §3
and §4. Further extensions will be presented in
the talk.

2 A two-dimensional scattering problem

and its solution

To illustrate the main features of the approach,
we consider scattering of obliquely-incident plane
waves by a rigid thin plate fixed in the free sur-

face of water of infinite depth.
Cartesian coordinates are used with z = 0

in the mean free surface and the fluid extending
into z < 0. A rigid horizontal plate is placed on
the surface, z = 0, and extends uniformly in the
y-direction with −a < x < a.

Assuming time-harmonic incident waves of
angular frequency ω making an angle θ0 with
respect to the positive x direction, the velocity
field components are found from the gradient of
ℜ{φ(x, z)ei(β0y−ωt)} where the velocity poten-
tial φ(x, z) satisfies

(∇2 − β2
0)φ(x, z) = 0, z < 0, (1)

with β0 = K sin θ0, K = ω2/g and

φz(x, 0)−Kφ(x, 0) = 0, (2)

on the free surface and |∇φ| → 0 as z → −∞.
The zero-velocity condition to be applied on the
plate is

φz(x, 0) = 0, |x| < a. (3)

and at the ends of the plate (as x approaches
±a) the potential should be bounded. Finally
radiation conditions are required and we write

φ(x, z) ∼

{

φi(x, z) +Rφi(−x, z), x → −∞

Tφi(x, z), x → ∞

(4)
where R and T are the complex reflection and
transmission coefficients and φi(x, z) = eiα0xeKz

with α0 = K cos θ0.
The Fourier transform of the scattered part

of the potential is defined by

φ(α, z) =

∫

∞

−∞

(φ(x, z) − φi(x, z))e
−iαx dx (5)

and the contour of integration in the inverse
transform will be defined in order to satisfy the
radiation condition.

The application of the Fourier transform yields
the following integral equation for the unknown
function φ(x, 0)

φ(x, 0) + (K0φ)(x) = eiα0x (6)
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for |x| < a where

K0φ =
K

2π

∫

∞

−∞

eiαx

k0 −K

∫ a

−a

φ(x′, 0)e−iαx′

dx′ dα.

and k20 = α2+β2
0 . R and T can be expressed in

terms of simple integral relations of φ.
The unknown in (6) is expanded in terms of

a set of prescribed functions,

φ(x, 0) = 1
2

∞
∑

n=0

inanPn(x/a), |x| ≤ a (7)

with unknown complex-valued coefficients an where
Pn are orthogonal Legendre polynomials.

The expansion (7) is substituted into (6)
which is multiplied through by p∗m(x/a) and in-
tegrated over −a < x < a. This Galerkin pro-
cedure results in the following infinite system of
equations for the unknown coefficients an:

am
2(2m + 1)

+
∞
∑

n=0

anKm,n = jm(α0a), (8)

m = 0, 1, 2, . . . where

Km,n =
Ka

2π

∫

∞

−∞

jn(αa)jm(αa)

k0 −K
dα. (9)

and jm(x) is the spherical Bessel function. The
integral passes under the pole at k0 = K.

Numerical results show that a truncation to
just 1 term works well over a large range of Ka
and accuracy increases rapidly with increasing
truncation size.

3 Extensions to three-dimensional scat-

tering by finite docks

The main focus of the talk will be on using ex-
tensions of this method for 3-dimensional scat-
tering problems. The figures illustrate examples
of the results one can obtain. We show maxi-
mum surface amplitudes for monochromatic plane
incident wave (left to right) scattering by rect-
angular rigid plates and rhomboidal plates.

4 Eigenvalue problems

A second extension of the approach is in solving
geometrically complementary problems where
the surface is covered by a rigid plate apart
from a, say, rectangular section in which the
fluid forms a free surface. Mathematically we
have an eigenvalue problem in which the slosh-
ing modes and their frequencies can be deter-
mined from a homogenous system of equations.
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Figure 1: Wave amplitudes for left-right inci-
dent wave scattering by rigid plates in the sur-
face.
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