
NUMERICAL METHODS FOR PDES: PROBLEM SHEET 1

Abstract. This sheet covers numerical differentiation, interpolation and il-

lustrates the concepts of consistency, stability and convergence in the simpler

context of numerical methods for ordinary differential equations.

(1) Let f : R → R be a smooth function of the variable x. Write down an
approximation to the second derivative f ′′(xj) in terms of the values of f
at the following points.
(a) xj − h, xj and xj + h (centered formula),
(b) xj − 2h, xj − h and xj (left-sided formula).
(c) xj , xj + h and xj + 2h (right-sided formula).
(d) xj , xj + h, xj + 2h and xj + 3h (right-sided formula).
(e) xj − λh, xj and xj + h (non-uniform grid)

In each case, use two approaches: (i) the Taylor series approach and (ii)
the interpolating polynomial approach. Also, state the order of accuracy
of the formula in the limit h→ 0.

(2) This exercise is taken from [1], p. 44. Examine how polynomial interpo-
lation over a uniform grid can go wrong by experimenting with the fol-
lowing MATLAB code which considers f(x) := 1/(1 + 16x2) over [−1, 1].
Try N = 5, 10, 15, 20, as well as other functions which are smooth in the
real line segment [−1, 1] but have singularities nearby in the complex plane.
Then try another function which is analytic like f(x) := ex (although MAT-
LAB’s interpolation function may struggle if N is too large!). Verify that
interpolation with respect to Chebyshev points always works well.

% Matlab program: Polynomial Interpolation

N=10;

xx=-1.01:0.005:1.01;

for i=1:2

if i==1, s=’equispaced pts’; x=-1+2*(0:N)/N; end

if i==2, s=’Chebyshev pts’; x=cos(pi*(0:N)/N); end

subplot(2,1,i)

% change function in the next two lines

u =1./(1+16*x.^2);

uu=1./(1+16*xx.^2);

p=polyfit(x,u,N); % calculate interpolating poly.

pp=polyval(p,xx); % evaluate poly over dense grid

% plot interpolant over equispaced grid

plot(x,u,’.b’,’markersize’,13)

hold on

plot(xx,pp,’-b’)

plot(xx,uu,’-r’)

axis([-1.1 1.1 -1 1.5]); title(s)

error=norm(uu-pp,inf);
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text(-0.5,-0.5,[’max error =’ num2str(error)])

end

(3) If L is a nonzero integer then the initial value ODE problem

ut(t) = f(u, t) :=
L

t+ 1
u(t), u(0) = 1

has a unique solution u(t) = (t+ 1)L. Suppose we calculate an approxima-
tion to u(2) using the following methods:
(a) un+1 = un + kfn (Euler’s Method)
(b) un+1 = un−1 + 2kfn (Midpoint rule)
(c) un+1 = un+ k

24 (55fn−59fn−1+37fn−2−9fn−3) (higher order Adams-
Bashforth method)

(using exact values where needed for initialisation). Find the order of accu-
racy of the methods and hence identify the maximum value of L for which
each method will be exact.

(4) By the method of undetermined coefficients, derive a third-order finite-
difference method of the form

un+1 = αun + βun−1 + k(γfn + δfn−1)

for integrating the ODE ut = f(u, t).
Help: You should find

un+1 = −4un + 5un−1 + k(4fn + 2fn−1) .

Then show using “von Neumann analysis”, i.e. by looking for solutions of
the form

un = gn (g to the power n)

that the formula is unstable in the limit as k → 0 and therefore useless.

(5) Consider the finite-difference method

un+1 = 2un − un−1

for the ODE ut = f(u, t). Why is this method flawed? Show that it is
consistent but unstable.

(6) Which of the following formulae for integrating the ODE ut = f(u, t) are
convergent? Are the nonconvergent ones inconsistent or unstable or both?
(a) un+1 = 1

2u
n + 1

2u
n−1 + 2kfn

(b) un+1 = un

(c) un+4 = un + 4
3k(fn+3 + fn+2 + fn+1)

(d) un+3 = un+1 + 1
3k(7fn+2 − 2fn+1 + fn)
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