NUMERICAL METHODS FOR PDES: PROBLEM SHEET 1

Abstract

This sheet covers numerical differentiation, interpolation and illustrates the concepts of consistency, stability and convergence in the simpler context of numerical methods for ordinary differential equations.

(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function of the variable x. Write down an approximation to the second derivative $f^{\prime \prime}\left(x_{j}\right)$ in terms of the values of f at the following points.
(a) $x_{j}-h, x_{j}$ and $x_{j}+h$ (centered formula),
(b) $x_{j}-2 h, x_{j}-h$ and x_{j} (left-sided formula).
(c) $x_{j}, x_{j}+h$ and $x_{j}+2 h$ (right-sided formula).
(d) $x_{j}, x_{j}+h, x_{j}+2 h$ and $x_{j}+3 h$ (right-sided formula).
(e) $x_{j}-\lambda h, x_{j}$ and $x_{j}+h$ (non-uniform grid)

In each case, use two approaches: (i) the Taylor series approach and (ii) the interpolating polynomial approach. Also, state the order of accuracy of the formula in the limit $h \rightarrow 0$.
(2) This exercise is taken from [1], p. 44. Examine how polynomial interpolation over a uniform grid can go wrong by experimenting with the following MATLAB code which considers $f(x):=1 /\left(1+16 x^{2}\right)$ over $[-1,1]$. Try $N=5,10,15,20$, as well as other functions which are smooth in the real line segment $[-1,1]$ but have singularities nearby in the complex plane. Then try another function which is analytic like $f(x):=e^{x}$ (although MATLAB's interpolation function may struggle if N is too large!). Verify that interpolation with respect to Chebyshev points always works well.

```
% Matlab program: Polynomial Interpolation
N=10;
xx=-1.01:0.005:1.01;
for i=1:2
if i==1, s='equispaced pts'; x=-1+2*(0:N)/N; end
if i==2, s='Chebyshev pts'; x=cos(pi*(0:N)/N); end
subplot(2,1,i)
% change function in the next two lines
u =1./(1+16*x. ^2);
uu=1./(1+16*xx.^2);
p=polyfit(x,u,N); % calculate interpolating poly.
pp=polyval(p,xx); % evaluate poly over dense grid
% plot interpolant over equispaced grid
plot(x,u,'.b','markersize',13)
hold on
plot(xx,pp,'-b')
plot(xx,uu,'-r')
axis([-1.1 1.1 -1 1.5]); title(s)
error=norm(uu-pp,inf);
```

text(-0.5,-0.5,['max error $=$ ' num2str(error)])
end
(3) If L is a nonzero integer then the initial value ODE problem

$$
u_{t}(t)=f(u, t):=\frac{L}{t+1} u(t), \quad u(0)=1
$$

has a unique solution $u(t)=(t+1)^{L}$. Suppose we calculate an approximation to $u(2)$ using the following methods:
(a) $u^{n+1}=u^{n}+k f^{n}$ (Euler's Method)
(b) $u^{n+1}=u^{n-1}+2 k f^{n}$ (Midpoint rule)
(c) $u^{n+1}=u^{n}+\frac{k}{24}\left(55 f^{n}-59 f^{n-1}+37 f^{n-2}-9 f^{n-3}\right.$) (higher order AdamsBashforth method)
(using exact values where needed for initialisation). Find the order of accuracy of the methods and hence identify the maximum value of L for which each method will be exact.
(4) By the method of undetermined coefficients, derive a third-order finitedifference method of the form

$$
u^{n+1}=\alpha u^{n}+\beta u^{n-1}+k\left(\gamma f^{n}+\delta f^{n-1}\right)
$$

for integrating the ODE $u_{t}=f(u, t)$.
Help: You should find

$$
u^{n+1}=-4 u^{n}+5 u^{n-1}+k\left(4 f^{n}+2 f^{n-1}\right)
$$

Then show using "von Neumann analysis", i.e. by looking for solutions of the form

$$
u^{n}=g^{n} \quad(g \text { to the power } n)
$$

that the formula is unstable in the limit as $k \rightarrow 0$ and therefore useless.
(5) Consider the finite-difference method

$$
u^{n+1}=2 u^{n}-u^{n-1}
$$

for the ODE $u_{t}=f(u, t)$. Why is this method flawed? Show that it is consistent but unstable.
(6) Which of the following formulae for integrating the ODE $u_{t}=f(u, t)$ are convergent? Are the nonconvergent ones inconsistent or unstable or both?
(a) $u^{n+1}=\frac{1}{2} u^{n}+\frac{1}{2} u^{n-1}+2 k f^{n}$
(b) $u^{n+1}=u^{n}$
(c) $u^{n+4}=u^{n}+\frac{4}{3} k\left(f^{n+3}+f^{n+2}+f^{n+1}\right)$
(d) $u^{n+3}=u^{n+1}+\frac{1}{3} k\left(7 f^{n+2}-2 f^{n+1}+f^{n}\right)$

References

1. Lloyd. N. Trefethen, Spectral Methds in Matlab, SIAM, Philadelphia, 2000.
