
NUMERICAL METHODS FOR PDES: PROBLEM SHEET 2

Abstract. This sheet focuses on the case where the partial differential equa-

tion is of parabolic type.

(1) Consider the heat equation

ut =
σ2

2
uxx , t > 0 ,

subject to the initial condition u(·, 0) = u0.
(a) Show that it is well-posed as a pure initial-value problem on the real

line, in the space of square-integrable functions.
(b) Show that it is well-posed as an initial-boundary-value problem on the

interval 0 < x < L, with periodic boundary conditions, in the space of
square-integrable L-periodic functions.

(2) In this question, we review some properties of the discrete Fourier transform
that were used in the lectures to justify von Neumann analysis.

Let X := CN be equipped with the norm

‖v‖ :=

hN−1∑
j=0

|vj |2
 1

2

where h = L/N and L is some fixed positive number. We put

xj = jh , 0 ≤ j < N ,

and define the discrete Fourier transform v̂ of v as the vector in CN with
components

v̂` =
1

N

N−1∑
j=0

vj e−iξ`xj where ξ`h =
`

N
2π , 0 ≤ ` < N .

(a) Show that, for 0 ≤ j < N ,

vj =

N−1∑
`=0

v̂` eiξ`xj .

(b) Prove Parseval’s identity: For every u, v ∈ X,

h

N−1∑
j=0

uj vj = L

N−1∑
`=0

û` v̂` .

(c) Deduce that

‖v‖2 = L

N−1∑
`=0

|v̂`|2 .
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(3) Consider the following finite difference methods to integrate the heat equa-
tion ut = uxx. Here, µ := k/h2 where k denotes the time step and h the
space step. In each case, find the order of accuracy and use von Neumann
analysis to determine the range of µ for which the method is stable.
(a) un+1

j = unj + µ(unj+1 − 2unj + unj−1) (Euler’s Method)

(b) un+1
j = unj + µ(un+1

j+1 − 2un+1
j + un+1

j−1 ) (Backward Euler)

(c) un+1
j = unj + 1

2µ(unj+1 − 2unj + unj−1) + 1
2µ(un+1

j+1 − 2un+1
j + un+1

j−1 )

(Crank-Nicolson method)
(d) un+1

j = un−1
j + 2µ(unj+1 − 2unj + unj−1) (Leapfrog method)

[Note the general form

un+1
j = unj + (1− θ)µ(unj+1 − 2unj + unj−1) + θµ(un+1

j+1 − 2un+1
j + un+1

j−1 )

for 0 ≤ θ ≤ 1 has the special cases θ = 0 (Euler’s method), θ = 1/2
(Crank-Nicolson) and θ = 1 (backward Euler)].

(4) For solving the nonlinear heat equation ut = (a(u)ux)x consider the explicit
scheme

un+1
j = unj + µ[ anj+1/2(unj+1 − unj )− anj−1/2(unj − unj−1) ]

where anj±1/2 := 1
2 [ a(unj±1) + a(unj ) ] and µ := k/h2. If 0 < a∗ ≤ a(u) ≤ a∗,

apply von Neumann analysis by freezing the nonlinear coefficient in order
to determine a plausible condition, in terms of µ, for stability.

(5) Consider the advection-diffusion equation

ut + aux − uxx = 0

with Dirichlet boundary conditions and a ≥ 0 a constant. Show that

u(x, t) = exp[−(i`πa+ `2π2)t+ i`πx]

is, for every `, a particular solution of the problem. Use von Neumann
analysis to derive the stability condition for the upwind scheme

un+1
j − unj

k
+ a

un+1
j − un+1

j−1

h
=
un+1
j+1 − 2un+1

j + un+1
j−1

h2
.

What is the order of accuracy of the scheme?


