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1 The UCB algorithm

We now present an algorithm for the multi-armed bandit problem known as
the upper confidence bound (UCB) algorithm. These notes closely follow
the presentation in Chapter 2 of Bubeck and Cesa-Bianchi, Regret Anal-
ysis of Stochastic and Nonstochastic Multi-armed Bandit Problems, NOW
Publishers, 2012, specialised to the case of Bernoulli bandits for simplicity.

We consider a bandit with K arms, and denote by Xi(t), i ∈ {1, . . . ,K},
t ∈ N, the random reward that would be received if arm i were played in time
step t. We assume that the random rewards Xi(t), t ∈ N associated with
the ith arm are iid Bern(µi), and that rewards are mutually independent
across arms. Finally, we assume without loss of generality (wlog) that the
arms have been ordered so that µ1 > µ2 ≥ . . . ≥ µK , but that the ordering,
and the parameters µ1, . . . , µK , are unknown to the player. The quantities
∆i = µ1 − µi, i ≥ 2, are termed the arm gaps. They measure how difficult
it is to distinguish the best arm from competing arms, and will hence play
a role in the best regret we can achieve.

We introduce some more notation. Denote by I(t) ∈ {1, . . . ,K} the arm
played in round, or time step, t. We shall use the terms round and time step
interchangeably. In general, I(t) will depend on the arms played in previous
rounds and the observed rewards. It may involve additional randomness, i.e.,
the player might adopt a randomised strategy. We assume that the player
has access to a source of randomness independent of Xi(t), i ∈ {1, . . . ,K},
t ∈ N, in order to implement such a policy. Denote the number of times arm
i has been played in the first t rounds by

Ni(t) =
t∑

s=1

1(I(s) = i),
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and the total reward obtained from this arm in the first t rounds by

Si(t) =
n∑
s=1

Xi(s)1(I(s) = i),

where 1(A) denotes the indicator of the event A. Finally, denote the sample
mean reward obtained from the first n plays of arm i by µ̂i,n. Then, we have

µ̂i,Ni(t) =
Si(t)

Ni(t)
,

provided Ni(t) is non-zero; µ̂i,Ni(t) is undefined if Ni(t) is zero.

We motivate the UCB algorithm before stating it precisely. Suppose t is
such that Ni(t) > 0 for all i, i.e., each arm i has been played at least once in
the first t rounds. The simplest or most naive approach would be to assume
that µ̂i,Ni(t) is an accurate estimate of µi, and play the arm with the highest
sample mean. How well does this strategy perform? Suppose we first play
each arm once, so that sample means are well defined, and subsequently
only play the arm with the highest sample mean. Now, with probability
1− µ1, arm 1 yields zero reward on the first play, whereas with probability
at least µ2, one of the other arms (in fact, the second arm) yields a unit
reward. Moreover, the sample mean for this arm will always be strictly
positive in future, so the first arm will never be played. Thus, we see that
with probability at least µ2(1−µ1), the first arm is played only once. Hence,
the regret up to time T is given by

R(T ) ≥ E
[ T∑
s=1

µ1 − µI(s)
]
≥ (T − 1)µ2(1− µ1)(µ1 − µ2).

Thus, the regret scales linearly in T for this strategy, whereas both heuristics
in the last section yielded sublinear regret. Therefore, treating the sample
mean as if it were the true mean (a policy known as certainty equivalence)
is clearly not optimal.

We need to somehow account for the uncertainty in our estimate. We take
the approach of being optimistic in our estimate of the true reward distribu-
tion. For a given small value δ > 0, how large could µi be to account for the
observed rewards, with confidence at least δ? Since the rewards take values
in [0, 1], we can use Hoeffding’s inequality from earlier. We have

P
(
µi > µ̂i,n + x

)
≤ P

(∣∣∣ n∑
i=1

Xi(t)− nµi)
∣∣∣> nx

∣∣∣) ≤ e−2nx2 . (1)
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It follows that

x =

√
1

2n
log
(1

δ

)
⇒ P

(
µi ≤ µ̂i,n + x

)
> 1− δ.

Thus, the largest, or most optimistic, value consistent with a (1 − δ) con-
fidence interval for µi is equal to µ̂i,n +

√
log(1/δ)/2n, after arm i has

been played n times; in other words, at time t, this value is µ̂i,Ni(t) +√
log(1/δ)/2Ni(t). This is called the upper confidence bound (UCB) as-

sociated with arm i. The UCB algorithm plays, at each time instant, the
arm with the highest UCB value (breaking ties arbitrarily, if there are any).
The last ingredient in the UCB algorithm is to not use a fixed confidence
level δ, but to adapt it over time in the correct way. With this rough intu-
ition, we now formally describe the UCB algorithm and analyse its regret.
The algorithm will be parametrised by a positive real number, α.

UCB(α) algorithm

1. In the first K rounds, where K is the number of arms, play each arm
once, in arbitrary order.

2. At the end of each round t ≥ K, compute the UCB(α) index of each
arm. The index of arm i ∈ {1, . . . ,K} is defined to be

µ̂i,Ni(t) +

√
α log t

2Ni(t)
.

In round t + 1, play the arm with the highest index, breaking ties
arbitrarily. In other words,

I(t+ 1) ∈ arg max
i=1,...,K

{
µ̂i,Ni(t) +

√
α log T

2Ni(t)

}

We can now prove the following upper bound on the regret of this algorithm.

Theorem 1 Consider the multi-armed bandit problem with K arms, where
the rewards from the ith arm are iid Bernoulli(µi) random variables, and
rewards from different arms are mutually indpendent. Assume wlog that
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µ1 > µ2 ≥ . . . ≥ µK , and, for i ≥ 2, let ∆i = µ1 − µi. Let R(T ) denote the
regret of the UCB(α) algorithm in the first T rounds. Then, for α > 1,

R(T ) ≤
K∑
i=2

(α+ 1

α− 1
∆i +

2α log T

∆i

)
.

Remarks. The main point to observe is that the regret grows very slowly
with T ; it only grows logarithmically in T . This shouldn’t be too surprising
as we already saw a heuristic that achieved logarithmic regret, albeit for a
fixed time horizon T , and assuming that the reward parameters µ1 and µ2
were known. Secondly, the expression above shows a trade-off inherent to
the choice of α. In the long run, when T is large, the second term dominates,
and so we would like to choose α as small as possible. But the first term,
which is constant for all T , grows with α, and blows up to infinity as α
approaches 1 from above. In practice, choosing α a little bit bigger than 1,
say α = 2, is a good compromise.

Proof. First observe that if Is+1 = i, then one or more of the following
three things must be true:

µ̂1,N1(s) ≤ µ1 −

√
α log s

2N1(s)
, (2)

µ̂i,Ni(s) > µi +

√
α log s

2Ni(s)
, (3)

Ni(s) <
2α log s

∆2
i

. (4)

Indeed, if all three inequalities are false, we have:

µ̂1,N1(s) +

√
α log s

2N1(s)
> µ1

= µi + ∆i

≥ µi +

√
2α log s

Ni(s)

≥ µ̂i +

√
α log s

2Ni(s)
. (5)
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Here, the first inequality holds because (2) is assumed to be false, the equal-
ity follows from the definition of ∆i, the second inequality holds because (4)
is false, and the last inequality because (3) is false. However, if (5) is true,
then the UCB(α) index of arm 1 is strictly bigger than that of i at the end
of round s, and so arm i cannot be played in round s+ 1. By contradiction,
at least one of (2)-(4) must be true, as claimed.

We now use this to bound the expected number of times that a suboptimal
arm has been played up to a time t. Let

u =
⌈2α log t

∆2
i

⌉
,

where we have not made it explicit in the notation that u is a function of i
and t. Now, for an arbitrary sequence I(s), s = 1, 2, . . . , t, we have

Ni(t) =

t∑
s=1

1(I(s) = i) ≤ u+

t∑
s=1

1(Ni(s− 1) ≥ u and I(s) = i).

Indeed,equality holds above if the sequence I(s) is such that Ni(t) ≥ u,
whereas the inequality is strict if Ni(t) < u. Moreover, the inequality Ni(s−
1) ≥ u cannot hold for s ≤ u (Why?), and so we can rewrite the above as

Ni(t) ≤ u+

t∑
s=u+1

1(Ni(s− 1) ≥ u and I(s) = i). (6)

Notice that the above is a statement about sequences that always holds,
and does not depend on the distribution of the random variables involved.
Moreover, for every s ≤ t, and for u defined as above, u ≥ (2α log(s−1))/∆2

i .
Hence, Ni(s − 1) ≥ u implies that Ni(s − 1) ≥ (2α log(s − 1))/∆2

i . Thus,
taking expectations on both sides of (6), we get

E[Ni(t)] ≤ u+ E
[ t∑
s=u+1

1(I(s) = i and ineq. (4) is false)
]

≤ u+
t∑

s=u+1

E[1(ineq. (2) or ineq. (3) is true)]

≤ u+

t∑
s=u+1

(
P(ineq. 2 is true) + P(ineq. (3) is true)

)
. (7)
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We will bound the above quantity, by bounding each of the last two prob-
abilities. We bound each of the probabilities using Hoeffding’s inequality,
and the bounds take the same form:

P
(
µ̂i,Ni(s) − µi >

√
α log s

2Ni(s)

)
≤ e−α log s = s−α.

The same bound also applies to the probability of the inequality in (2).
Substituting these bounds in (7), we get

E[Ni(t)] ≤ u+
t∑

s=u+1

2s−α

≤ u+

∫ ∞
u

2s−αds

≤ u+
2

α− 1
u−α+1

≤ u+
2

α− 1
,

since u ≥ 1. We’ve used the fact that α > 1 by assumption to obtain the
third inequality. Substituting the definition of u in the above, we get

E[Ni(t)] ≤
⌈2α log t

∆2
i

⌉
+

2

α− 1
≤ 2α log t

∆2
i

+ 1 +
2

α− 1
.

Finally, note that a regret of ∆i = µ1 − µi is incurred every time arm i is
played. Using the above bound on the expected number of plays of arm i
up to time t, and summing over i, we obtain the claim of the theorem. �

The above theorem gives us an upper bound on the regret achieved by
the UCB(α) algorithm. Ignoring the constant term, and noting that we
need α to be bigger than 1, we see that the regret grows with T like
2 log T

∑K
i=2(1/∆i).

Can some other algorithm do better? Can it achieve a regret growing more
slowly with T , say as log log T , or even bounded by a constant for all T? Our
next result says that this is impossible, and that a log T scaling is the best
achievable. Moreover, the constant factor multiplying log T in the UCB
regret bound is close to the best that any algorithm can achieve. There
is a variant of the UCB algorithm known as KL-UCB which does achieve
the best possible asymptotic growth rate of regret (i.e., the best possible
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constant multiplying the log T term), but it is a bit more complicated and
we won’t study it.

Definition. A policy or strategy for the multi-armed bandit problem is said
to be strongly consistent if its regret satisfies R(T ) = o(Tα) for all α > 0.

In words, a policy is strongly consistent if its regret grows slower than any
fractional power of T . The first heuristic we studied for the multi-armed
bandit problem had regret growing as R(T ) ∼ Tµ2/µ1 . Thus, the regret for
this heuristic is sublinear, but it is not o(Tα) for any α ≤ µ2/µ1. Hence, it is
not strongly consistent. On the other hand, the UCB(α) policy is strongly
consistent for any α > 1 as it was shown that its regret grows only logarith-
mically in T . Lai and Robbins (Asymptotically efficient adaptive allocation
rules, Advances in Applied Mathematics, 1985) proved the following about
any strongly consistent policy.

Theorem 2 (Lai and Robbins, 1985) Consider the multi-armed bandit
problem with K arms, where the rewards from arm i are iid Bern(µi), and
rewards from distinct arms are mutually independent. Then, for any strongly
consistent policy, the number of times, Ni(T ), that a sub-optimal arm i is
played up to time T , satisfies

lim inf
T→∞

E[Ni(T )]

log T
≥ 1

K(µi;µ∗)
,

where µ∗ = maxKi=1 µi denotes the mean reward from the optimal arm, and
K(q; p) is the relative entropy or KL-divergence of a Bern(q) distribution
with respect to a Bern(p) distribution.

We won’t prove this theorem, but use it to obtain a lower bound on the
regret of any policy for the multi-armed bandit problem. Notice that it
suffices to restrict ourselves to strongly consistent policies as we know that
such policies exist (in fact, we showed that UCB(α) is one such policy), and
that any policy which is not strongly consistent has regret growing at least
as fast as T ε, for some ε > 0. Now, using the theorem of Lai and Robbins,
it easily follows that the regret of any policy is bounded below as follows:

lim inf
T→∞

R(T )

log T
= lim inf

T→∞

∑
i:µi<µ∗

(µ∗ − µi)E[Ni(T )]

log T
≥

∑
i:µi<µ∗

µ∗ − µi
K(µi;µ∗)

. (8)
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We want to know how this compares with the UCB(α) algorithm, for which
we showed that the regret satisfies

lim sup
T→∞

R(T )

log T
≤

∑
i:µi<µ∗

2

µ∗ − µi
. (9)

In order to compare the bounds in (8) and (9), we invoke Pinsker’s inequality,
which states for Bern(p) and Bern(q) distributions that K(q; p) ≥ 2(q− p)2.
The proof is a homework problem. Using this inequality, we see that the
upper bound on the regret achieved by UCB is approximately four times as
large as the Lai and Robbins lower bound on the best regret achievable by
any algorithm. This shows that the UCB algorithm is close to optimal.
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