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S1 Painting Algorithm

Li and Stephens (2003) described a likelihood based model that captures key fea-
tures of the genealogical process with recombination while remaining computa-
tionally tractable for large datasets. Under the model, a chromosome is generated
chunk-by-chunk by ‘copying’ from a conditional set of fixed haplotypes. In our
notation, every individual consists of two haploids, each consisting of a single
phased haplotype per chromosome. The L total SNPs in each haploid are listed
one chromosome at a time, in order within each chromosome.

Suppose that we wish to generate a particular haploid h∗ = {h∗1, ..., h∗L},
with h∗l the observed allele of h∗ at site l, using j pre-existing donor haploids
h1, ..., hj . Let ~ρ = {ρ1, ..., ρL−1} be a vector of genetic distances, with ρl the
population-scaled genetic distance between sites l and l+ 1 (i.e. ρl = Negl, where
Ne is analogous to the “effective population size” and gl is the genetic distance in
Morgans between sites l and l + 1). (Between chromosomes, the genetic distance
between the last site of the previous chromosome and the first site of the next
chromosome is ∞.) Let ~f = {f1, ..., fj} be a vector of copying probabilities, with
fk the probability of copying from haploid hk at any site. Let θ correspond to
a per site mutation (or “imperfect copying”) parameter. The conditional prob-
ability Pr(h∗ | h1, ..., hj ; ~ρ, ~f, θ) is structured as a Hidden Markov model. Let
~Y = {Y1, ..., YL} represent the hidden state sequence vector, with Yl the existing
haploid from the set h1,...,hj that haploid h∗ copies from at site l. Switches in the
haploid being copied between Yl and Yl+1 occur as a Poisson process with rate
ρl. The transition probabilities for Y between sites l and l + 1 are as follows (we
exclude h1, ..., hj and the parameters from the left side of equations (S1) and (S2)
below for ease of reading):

Pr(Yl+1 = yl+1|Yl = yl) =

 exp(−ρl) +
(

1− exp(−ρl)
)
fyl+1

if yl+1 = yl;(
1− exp(−ρl)

)
fyl+1

otherwise,
(S1)
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The observed state sequence component of the Hidden Markov Chain, the prob-
ability of observing a particular allele given the haploid that h∗ is copying from
at a given SNP, allows for “imperfect” copying:

Pr(h∗l = a|Yl = y) =
{

1.0− θ hyl = a;
θ hyl 6= a.

(S2)

Here hkl refers to the allelic type of haploid k at SNP l. To calculate Pr(D) ≡
Pr(h∗ | h1, ..., hj ; ~ρ, ~f, θ), a summation is performed over all permutations of the
copying process, i.e. a summation over all possible y, which can be accomplished
efficiently using the forward algorithm (e.g. Rabiner 1989).

For all analyses presented here, we fix the mutation parameter θ to Watterson’s
estimate (Watterson 1975), as used by Li and Stephens (2003), i.e.

θ =
1
2

(∑j
i=1 1/i

)−1

j +
(∑j

i=1 1/i
)−1

for j total haploids. We fix each gl by taking the build 36 genetic distance esti-
mates from the HapMap website (http://www.hapmap.org), which were calcu-
lated using Phase II genotypes and averaging values across the three HapMap
populations as described by the International HapMap Consortium (2007). We
also fix each fk to be 1/j for k = 1, ..., j, allowing for equal a priori probability
of copying from each conditional haploid.

Calculating expected number of chunks copied:

The average number of chunks copied to a haploid ∗ is a random variable denoted
x̂i = El=1···L(Xil), where Xil is the probability that a given locus l is a new
haplotypic segment copied from individual i. To calculate x̂1, ..., x̂j , the posterior
expected number of chunks for which haploid h∗ copies from each of h1, ..., hj ,
respectively, we calculate f̂k,l, the probability haploid h∗ is copying from haploid
hk at site l given at least one “switch” has occurred between l − 1 and l. Again
excluding parameters for ease of reading, let αkl = Pr(h∗1, ..., h∗l, Yl = hk) and
βkl = Pr(h∗(l+1), ..., h∗L | Yl = hk). Then

x̂k = αk1βk1
Pr(D) +

∑L−1
l=1 ( 1

Pr(D))
[
αk(l+1)βk(l+1) − αklβk(l+1) Pr(h∗(l+1)|Yl+1 = hk) exp(−ρl)

]
= αk1βk1

Pr(D) +
∑L−1

l=1 f̂k,l.

(S3)
Note that we later drop the ‘hat’ notation for convenience, and form the matrix
of all haplotype recipients ∗ as xij . Each row of xij corresponds to the vector x̂
calculated above.
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We calculate αkl for k = 1, ..., j in the following manner (Rabiner 1989):

1. αk1 = Pr(h∗1 | Y1 = hk)fk

2. αkl = Pr(h∗l | Yl = hk)
([∑j

i=1 αi(l−1)

]
fk
(
1− exp(−ρl)

)
+ exp(−ρl)αk(l−1)

)
for l = 2, ..., L.

We calculate βkl for k = 1, ..., j in the following manner (Rabiner 1989):

1. βkL = 1.0

2. βkl =
[∑j

i=1 βi(l+1)fi Pr(h∗(l+1) | Yl+1 = hi)
](

1−exp(−ρl)
)
+exp(−ρl) Pr(h∗(l+1) |

Yl+1 = hk)βk(l+1) for l = 1, ..., (L− 1).

Calculating expected lengths of copied chunks:

To calculate l̂1, ..., l̂j , the posterior expected length (in Morgans) of the total
genome for which haploid h∗ copies from each of h1, ..., hj , respectively, we calcu-
late the following (let Prh ≡ Pr(h∗(l+1) | Yl+1 = hk)):

l̂k = 1
Pr(D)

∑L−1
l=1 gl

[
αklβk(l+1)

(
exp(−ρl) + (1.0− exp(−ρl))fk

)
Prh

+(1/2)
[
αklβkl + αk(l+1)βk(l+1) − 2αklβk(l+1)

(
exp(−ρl) + (1.0− exp(−ρl))fk

)
Prh

]]
.

(S4)
Note that this involves the approximation that at most only one change point

occurs between neighbouring sampled sites. To get the expected length of each
chunk copied from donor hk, we divide equation (S4) by equation (S3) (i.e. l̂k/x̂k).

Calculating expected number of mutations:

To calculate m̂1, ..., m̂j , the posterior expected number of SNPs for which haploid
h∗ copies with mutation (i.e. emission) from each of h1, ..., hj , respectively, we
calculate the following (let I[h∗l 6=hkl] be an indicator that the allelic type carried
by h∗ does not match the allelic type carried by hk at SNP l):

m̂k = 1
Pr(D)

∑L−1
l=1 αklβklI[h∗l 6=hkl]. (S5)

Using the E-M algorithm to estimate the scaling parameter Ne:

One can take a fixed Ne for calculating ~ρ, or use the Expectation-Maximisation
(E-M) algorithm to find a local maximum of Ne in the following manner. Start
with an initial value of Ne (we take Ne = 400, 000/j), and at each iteration of the
E-M replace Ne with:
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N∗e =
∑L−1

l=1

(
[
∑j

k=1 f̂k,l][ρl]/[1.0− exp(−ρl)]
)∑L−1

l=1 gl
, (S6)

where ρl and each f̂k,l are calculated using the previous value of Ne. In analyses
presented here, we used 10 iterations of E-M to get our final estimate of Ne.

Using the E-M algorithm to estimate the mutation parameter θ

One can take a fixed θ for calculating (S2), or use the E-M to find a local maximum
of θ in the following manner. Start with an initial value of θ (we start with
Watterson’s estimate of θ), and at each iteration of the E-M replace θ with:

θ∗ =

∑L
l=1

(∑j
i=1 αilβilI[h∗l 6=hil]/Pr(D)

)
L

. (S7)

Here I[h∗l 6=hil] is an indicator that the allele h∗l carried by the recipient is not equal
to allele hil carried by donor haploid i at SNP l, and each αil, βil and Pr(D) are
calculated using the previous value of θ.

S2 Partition posterior probability evaluation

Here we define the full model for the coancestry matrix of expected copying counts
x (dropping the ‘hat’ notation). Each row of x is distributed according to Multi-
nomial likelihood F (·) as defined in Equation 1 of the main text:

x|η, P =
N∏
i=1

xi|Pqi ∼
N∏
i=1

F (·|Pqi), (S8)

where N is the number of individuals, Pqi is the row of P corresponding to the
population qi containing individual i, K is the number of populations and η is
the assignment of individuals to populations. Population membership qi can be
thought of as induced by η, as is the set of individuals found in a population Sa. A
Dirichlet Process Prior (e.g. Teh 2010) is placed on η, which (approximately, for
the purposes of exposition) means that for large K∗ →∞ (and not generally equal
to K), the probability of the number of individuals assigned to each population
n (which is related, but not equal to {Sa}a=1···K) follows n ∼ Multinomial(G)
with G ∼ Dirichlet(α/K∗, · · · , α/K∗). Note that in this view, many of these
populations will be empty, leaving a finite number K of occupied populations.

There are many representations of a Dirichlet Process, with a common choice
being {P1, · · · , PN} ∼ DP(α,G0), where G0 is the the ‘base distribution’, i.e.
we sample parameters Pa from G0, but obtain clustering by assigning the same
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parameters to multiple individuals. However, we choose an alternative description
that suppressed G0 which is simpler in our case.

The representation we find most natural is the joint assignment distribution
induced on {η,K}, where K is the number of populations observed in our sample.
This takes the form (Huelsenbeck and Andolfatto 2007):

p(η,K|α,N) = αK
∏K
a=1 Γ(|Sa|)∏N

i=1(α+ i− 1)
, (S9)

where there are N individuals, and α is the ‘concentration parameter’ determining
the number of occupied populations expected under the Dirichlet Process. In this
case we can write the distribution of each probability vector Pa:

{Pa, · · · , PK}|η = P |η ∼
K∏
a=1

Dirichlet(βa), (S10)

which is conjugate to F (and note that βa is a vector of length K). This repre-
sentation avoids the need to explicitly manage a G0 that is itself a function of the
number of populations K as is the case in our model. Note that we are free to
use any distribution here in principle; this choice of Dirichlet distribution is not
related to our use of a Dirichlet Process Prior.

From Equation S9, for fixed N and α the prior on η can be written:

η ∼ p(η) ∝ αK
K∏
b=1

Γ(|Sb|), (S11)

so that when α = 1 all possible assignments are given equal prior weight. This
allows us to control K in principle (though in practice the likelihood term over-
whelms the prior on K), and applies the usual Bayesian penalty for having addi-
tional parameters (via additional populations), leading to low K solutions being
favoured in the posterior. We wish to calculate the probability of a particular
partition η:

P (η|x) ∝ P (η)
K∏
a=1

L(xSa |η) (S12)

where L(xSa) is the likelihood of all the individuals in population a:

L(xSa) =
∏
m∈Sa

P<m,Sa(xm) =
∫ ∏

m∈Sa

F (xm|Pm)dH<m,Sa(Pm), (S13)

where P<m,Sa(xm) is the probability of the data row xm given the data for subset
(1, · · · ,m − 1) of individuals in Sa, with an incremental probability distribution
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over Pa called (abusively) Pm. This is split up as the integral over the likelihood
F (xm|Pm) of the probability of the parameters given the previous individuals
data, dH<m,Sa(Pm). Conjugacy allows the incremental probability to be written
as:

dH<m,Sa(Pm) = Dirichlet
(
Pm;

{
βab + dSa

<m,b

}
b=1,··· ,K

)
, (S14)

where βab is the prior given by Equation 2 of the main text and dSa
<m,b are the

counts from population Sb to population Sa for the individuals [[1, · · · ,m − 1]].
The final posterior follows from Eq. 3.13 of Lange (2002):

P (η|x) ∝ αK
K∏
a=1

Γ(|Sa|)
Γ(βa)

Γ(da + βa)

K∏
b=1

Γ(βab + xab)
Γ(βab)n̂xab

. (S15)

S3 MCMC implementation

There are 4 moves, 2 of which are based on the SAMS scheme from Dahl (2003)
and Pella and Masuda (2006), each of which is chosen with equal probability on
each iteration.

SAMS proposal: from an initial state η two different individuals are chosen
at random. If they are in the same population, it is split to form η′; if they are
in different populations they are merged to form η′. On a split of population c
(consisting of individuals Sc), the two individuals are each placed in new popu-
lations a and b and then each other individual in c is moved to i (either a or b)
with probability:

P (m,Si) =
|Si|

∫
F (xm|pm)dH<m,Si(pm)

|Sa|
∫
F (xm|pm)dH<m,Sa(pm) + |Sb|

∫
F (xm|pm)dH<m,Sb

(pm)
,

(S16)
where

∫
F (xm|pm)dH<m,S(pm) is the incremental probability of adding an indi-

vidual to the population. Because in our model all individuals must be assigned
to populations, we approximate it using the source population only and use a
rejection step to account for the discrepancy:∫

F (xm|pm)dH<m,Sa(pm) ≈ P (a, {i = 1, · · · ,m})P (c, {i = 1, · · · ,m})
P (a, {i = 1, · · · ,m− 1}P (c, {i = 1, · · · ,m− 1}

,

(S17)
The notation i = 1, · · · ,m refers to the fact that these individuals have been
moved to population a from population c previously when generating the proposal.
The incremental probability is calculated as in Equation S15:

P (a) =
Γ(β)

Γ(da + β)

K∏
b=1

Γ(βb + xab)
Γ(βb)n̂xab

, (S18)
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and P (b) is defined similarly. The probability of a given pair of split populations
a and b from a single population c is therefore:

P (a, b|m ∈ Sc) =
|Sc|∏
m=1

|Sqm |P (qm)
|Sa|P (a) + |Sb|P (b)

. (S19)

Once all individuals from population c have been placed, the new state η′ is
accepted with probability:

min(1, P (η′)/P (η)P (a, b|m ∈ Sc)). (S20)

A merge of two populations a and b in η similarly forms a new state η′ and is
accepted with probability

min(1, P (a, b|m ∈ Sc)P (η′)/P (η)). (S21)

‘merge-and-split’ (MAS) proposal: following the same strategy as above,
but first forces a merge and then a split. If we call the initial two populations
d and e in state η, they are merged to form an intermediate state c and resplit
(according to the procedure above) to form populations a and b in state η′. If
η = η′ the state is accepted (though we count a rejection for acceptance rate
purposes) else the state η′ is accepted with probability:

min(1, P (a, b|m ∈ Sc)P (η′)/P (η))P (c, d|m ∈ Sc). (S22)

individual proposal: move an individual to a new population. First choose
an individual i at random. If |Sqi | > 1 propose a new state η′ with i moved to a
population chosen uniformly from (1, · · · ,K) 6= qi and accept η′ with probability:

min(1, P (η′)/P (η)). (S23)

parameter proposal: moves all hyperparameters independently.

• Delta: set δ′ = δx with x ∼ U(−1, 1). Accept with probability
P (η|δ′)Γ(δ′; kδ, θδ)/P (η|δ)Γ(δ; kδ, θδ), where the prior for δ is a gamma dis-
tribution with specified parameters; (kδ, θδ) = (2, 0.01) throughout, provid-
ing a wide tailed distribution.

• F: set f ′ = fx with x ∼ U(−1, 1). Accept with probability
P (η|f ′)Γ(f ′; kf , θf )/P (η|f)Γ(f ; kf , θf ), where the prior for f is a gamma
distribution with specified parameters; (kδ, θδ) = (2, 0.01) throughout.
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S4 Theory linking PCA, STRUCTURE and fineSTRUCTURE 

Introduction 

In this section, we give (in the form of propositions, later backed up empirically) a detailed 

technical description of results described in the main paper regarding the links between 

different approaches to infer and analyse population structure. All results in this section 

refer to unlinked markers and we assume haploid data, though all results also extend to the 

diploid case. In a number of situations that we will highlight, we have used these results to 

naturally extend to the linked case.  

Since the subsequent material is somewhat detailed and technical, we begin with a summary 

of the results, which all relate to unlinked markers:  

Proposition 1. We can approximately regard our coancestry matrix (see main text) as a 

rescaled version of a matrix commonly used to perform principal components 

analysis (PCA) on genetic data (Price et al. 2006). 

Proposition 2. For all forms of the normal-approximation likelihood (covering a wide 

class of models) the PCA matrix contains all of the information available on 

population structure.  The form of this likelihood demonstrates a close link between 

model-based analyses such as that performed by STRUCTURE (Pritchard et al. 

2000), and PCA analyses of the type referred to in Proposition 1. Specifically, we 

show that for large datasets, the PCA matrix of Proposition 1 forms a set of 

sufficient statistics for the “STRUCTURE likelihood” – i.e. the likelihood of the data 

used by STRUCTURE’s “no linkage” model, and by other similar software 

applications. Thus, in practice we expect that almost all the information accessible to 

even model-based approaches is contained within the PCA matrix, and hence also 

within our coancestry matrix. The permitted population structure is very general and 

therefore includes both discrete population models and continuous models capturing 

admixture.  

Proposition 3. We derive an asymptotic approximation of the likelihood from 

Proposition 2 that takes a particularly simple form under the assumption of a large 

number of individuals and small drift. 

Proposition 4. Provided population structure is not very strong, and again for large 

datasets, the multinomial likelihood form that we use in fineSTRUCTURE gives the 

same asymptotic likelihood as that used by STRUCTURE (Pritchard et al. 2000) 

found in Proposition 3. The proof also leads to an explicit rescaling of the 

multinomial likelihood (our “ ” factor), and implies an algorithm to infer   in 

general, whose efficacy we test via simulation in a range of scenarios.  
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The results of Propositions 1 and 4, in particular, naturally motivate our approaches for 

analysing linked data, which we describe within the relevant sections. 

For clarity, this section has slightly modified notation.  We begin by defining quantities 

used throughout this section. 

Notes on notation 

We will make heavy use of vector notation.  Matrices and vectors will be in bold, and scalar 

quantities will be in italics.  For a matrix   of dimension     ,     selects an element, 

    selects the  th row and     selects the  th column.  We define   as the (appropriate 

length) vector containing all ones, hence        is the vector of row sums,         

is the vector of column sums, and          is the sum over all elements of  . Where 

ambiguity is possible we denote the length of one-vectors by subscripts e.g.   .  Note that 

unlike in the main text we do not use lower case to denote elements. 

Definitions and Initial Assumptions 

As in the main text, suppose we have data for   individuals, drawn from   populations, 

and let     be the population of individual  . Let   be the total number of segregating sites 

(after appropriate filtering). Let    be the total number of individuals from each population 

 . 

We define   to be the raw data matrix. Specifically, elements     are binary, taking the value 

1 if haplotype   carries that form at SNP   and 0 otherwise. We assume no missing data for 

the purposes of our derivations. We also assume all sites are biallelic, with sites with one or 

fewer occurrences of 0 or 1 removed and regarded as uninformative.  

We define   to be the observed coancestry matrix for these data (see main text, where this is 

called  ), where     is the total expected number of chunks – each consisting of exactly one 

SNP in the unlinked case – that individual   copies from individual  . We view this 

expectation as calculated using the Li and Stephens (2003) model for genetic data applied 

with an infinite recombination rate, and arbitrarily small mutation rate in this setting, and 

thus this matrix is determined by the data  . By the definition of the Li and Stephens 

algorithm, we have: 

      
      

       
 

              

           
 

 

   

  

(Note that if a non-zero mutation rate is instead used, the matrix obtained is simply a 

rescaled version of this, with a constant term added, except at SNPs with seen only once in 

the sample, which we are assuming have been removed from the data.) 
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We define the parameter matrix   to be the underlying donor matrix, where    gives the 

expected values for each entry of   and so     gives the fraction of chunks that individual   

is expected to copy from individual  . In particular, note we alter notation slightly from the 

text and view   as an     matrix (which will have a block-like structure if individuals are 

assigned to discrete populations).  

We define the Eigenstrat PCA matrix,   to be the matrix used for principal components 

analysis in the Eigenstrat approach (Price et al. 2006). To construct this matrix, viewing 

mutations as corresponding to columns in the data matrix, columns are first scaled to have 

zero mean and unit variance, and subsequently the rescaled data matrix is multiplied by its 

transpose, to give the following: 

     
                  

          
 

 

   

 

Here, we define     to be the observed sample frequency of the “1” allele at SNP  : 

    
 

 
    

 

   

 

We will make use of several assumptions, which are summarized here and more fully 

defined when they are introduced. 

A1. No linkage disequilibrium between loci within populations. Loci are independent 

conditional on underlying population assignments such that                 

within populations for      . 

A2. Large sample size. We only require the leading order contribution in terms of     

where   is the number of individuals sampled. 

A3. Normally distributed drift. Individuals are sampled in such a way that the drift can 

be approximated by a normal distribution.  In population models, this means that the 

sample contains many individuals per population, and that rare SNPs are excluded. 

A4. Large number of loci. We only require the leading order contribution in terms of 

    where   is the number of loci. 

A5. Weak drift.  We only require the leading order contribution of the drift, defined in 

Section S4.2. 

A6. (Technical assumption). The distribution of the (weighted) average frequency across 

all sampled individuals does not contain information on population structure.  

A7. More loci than individuals. The number of individuals   is small in relation to the 

number of loci  . 
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A8. (Technical assumption). We require to integrate out the ancestral SNP frequencies, 

for which we assume that any prior on these is weak compared to the likelihood. 

S4.1: The coancestry matrix and the PCA matrix 

The main result of this section is the following proposition. 

PROPOSITION 1: THE PCA AND COANCESTRY MATRICES ARE RELATED 

For haploid variation data where sites are treated as unlinked (A1), the off-diagonal 

elements of the Eigentrat PCA matrix   and the observed coancestry matrix   are 

approximately related by the following equation: 

                           

Proof: 

Let      
 

   
        be the empirical frequency of all SNPs excluding individual  . From 

the definition: 

      
      

       
 

              

           
 

 

   

 

 
 

   
  

      

    
 

              

      
 

 

   

 

 
 

   
  

                    

            
   

 

   

 

 
 

   
 

 

   
  

                   
 

            
 

           
 

            
 

 

 

   

 

 
 

   
 

 

   
  

                  

          
        

 

   

 

 
 

   
 

   

   
        

The proposition follows on rearrangement for    .  

Note that we can write                    . 

Using properties of the PCA matrix, we can then show that this means the Eigenstrat PCA 

matrix   and the observed coancestry matrix    have similar eigenvectors. 
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COROLLARY 1: THE PCA AND COANCESTRY MATRICES HAVE THE SAME EIGENVECTORS 

For haploid variation data where sites are treated as unlinked, assuming large population 

size (A2) the PCA matrix   and the observed coancestry matrix   have approximately 

identical eigenvectors. 

Proof: 

First note that  

          
         

 

          

 

   

     
   

             
 

          

 

   

   
        

 
    

 

          

 

   

    

since      
            , the ancestral frequency of the SNP.  Additionally, assuming 

that drift is small, we can replace the denominator            by          and the result 

follows. (Note that in many sensible models        as   becomes large, so the result may 

hold even when drift is moderate). 

Now note that the row and column sums of   are identically zero, so trivially the  -vector 

  is an eigenvector with eigenvalue 0. Similarly the same eigenvector has eigenvalue 1 for 

the co-ancestry matrix  . Let v be any other eigenvector of   with eigenvalue  . We must 

then have    
 
      and so  

   
 

   
                          

 

   
   

 

   

        

 
 

   
               

Therefore v is also an eigenvector of   with transformed eigenvalue 
 

   
      (when N 

is large, hence the approximation) as required.  

Discussion of Proposition 1: 

The above proposition suggests that a principal components approach based on the 

coancestry matrix should yield results comparable to those from using standard 

approaches. We confirmed this fact in the main text. Note that although the proposition 

excludes the diagonal of the PCA matrix, in practice since each row or column sum of this 

matrix is exactly zero, we do not expect there to be (much) information from these 

diagonals. In our coancestry matrix, each row and column automatically sums to 1, with 
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diagonal entries set to zero, and so the information “lost” using this approach, relative to 

the standard PCA approach, is the value of the row and column sums in the PCA matrix. 

However, under weak assumptions we have shown that asymptotically the expected value 

of each element along the diagonal of the PCA matrix is  , so the off-diagonal sums in the 

PCA matrix have expected value   , and add little or no information about population 

structure.  

In implementing these ideas in practice, we modified our matrix slightly to ensure that 

eigenvalues were ranked equivalently between our approach and the PCA matrix itself 

(with the most historically relevant eigenvalues taking the largest values). By corollary 1, the 

eigenvalues of   are shifted and scaled relative to those from the PCA matrix, with one 

large eigenvalue equal to 1. To fix this, we first removed the shift by setting diagonal 

elements equal to the column sums. In the unlinked case, this is identically equal to 
 

   
  

for each column, and adding these diagonal values trivially leaves eigenvectors unchanged 

and increases eigenvalues by this constant, removing the shift. To rescale the large 

eigenvalue to the value zero, we next subtract column means from each entry of the matrix. 

Again, in the unlinked case this simply removes 
 

   
  from each entry of the matrix, so has 

no effect on either the eigenvalues or eigenvectors, apart from the large eigenvalue 

corresponding to the N-vector  . Finally, the resultant matrix   will have eigenvalues that 

are simply rescaled by a factor 
 

   
 relative to the PCA matrix.  

Our new PCA approach obviously extends trivially to using the equivalent coancestry 

matrix in the linked case. For this case, we made one small final modification, to account 

for the fact that in the linked case our coancestry matrix need not be exactly symmetric, 

with the resultant drawback that left and right eigenvectors will differ slightly. To fix this, 

we note that if   is a general symmetric matrix, then the eigenvectors of    are identical. 

Motivated by this fact, and following other PCA approaches, we performed PCA in the 

general case on the matrix     
 

. In the linked case, this symmetrisation appeared to 

improve results slightly – other approaches we tried did not yield obvious improvements.  

S4.2: The coancestry matrix and model-based approaches to inferring 

structure 

Modelling population structure using a normally distributed drift matrix 

In general, population structure between separated groups is often modelled using the 

concept of genetic drift between populations (for details, see e.g. Pritchard et al. (2000), 

Nicholson et al. (2002), Patterson et al. (2006)). We begin by defining     to be the 

frequency of the mutation at the  th locus in population  . Several models assume a joint 

prior distribution on     with some shared mean    and variance matrix          . 

Conceptually,    can be thought of as representing the frequency of the mutation in an 
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ancestral population before population-specific genetic drift results in new frequencies in 

each separate population group.  The matrix   defines the covariance structure of this drift 

between populations. This allows, in general, for correlated drift among populations. Let us 

go further and assume as in the original Nicholson et al. (2002) formulation (which 

approximates genetic diffusion models) that 

                                     

This “Normal drift” approximation is expected to be quite accurate, provided drift   is 

relatively small and (as below) provided it is applied to SNPs that are not at frequency very 

close to 0 or 1, a condition reasonably appropriate for many datasets involving ascertained 

SNPs, and which can be easily imposed more generally. 

In all that follows, we use only the above assumption regarding drift, and thus our results 

apply across a fairly general range of settings. In particular, allowing for correlated drift 

means that if populations successively split, in a tree-like structure, the results still follow. 

Further, the no-linkage admixture model used by, for example, the program STRUCTURE 

(Pritchard et al. 2000) can be thought of as simply using an appropriate choice of   (with 

each individual representing a population). 

Now at an individual level, define     to be the frequency for SNP   in the population    to 

which individual i belongs:         
. From the above, we have immediately that 

                                           

where   is the individual-level matrix giving drift (from  ) between pairs of individuals. 

(This matrix is singular in general, but that will not affect our analysis.) We will formulate 

our likelihoods in terms of   . (A notation reminder:    is the vector of population SNP 

frequencies, and    is the ancestral frequency). 

Constructing an approximate likelihood 

For the remainder of this section, we study inference under normally distributed drift, 

using an approximation to the likelihood of the data. For this approximation to be valid, 

we assume (A3) that the number    of individuals sampled from each population  , and 

corresponding population-specific allele frequencies     are such that we may use a Normal 

approximation to the binomial sampling likelihood of the observed data. In practice, this 

means    should be large, at least ≥20, and     should not be very close to 0 or 1.   

Later, we will need an additional technical assumption (A6) that mean allele frequencies 

averaged over all populations are uninformative for population structure.  Provided that 

drift is weak we expect that typically these can contain at most weak information about the 

underlying population assignments, justifying this assumption. 
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We spend the remainder of this section deriving a form for the approximate likelihood, 

under these two (main) assumptions.  

PRELIMINARY TO PROPOSITION 2: SINGLE LOCUS LIKELIHOOD 

Under assumptions A1-3, and assuming also that a weak prior is placed on the ancestral 

SNP frequency (A8), the likelihood for a single locus   can be expressed in the following 

form: 

           
 
           

 
      

 

           
          

 
    

 
     1    

       
              

Where        is the (non-singular) covariance matrix. 

Proof and derivation: 

Conditional on the underlying allele frequencies, the observed allele counts in a (haploid) 

individual i from population   are independent among individuals, and simply Bernoulli 

with mean         and variance          ). By the assumptions, we may approximate 

the likelihood by behaving as if data are taken from a Normal distribution. If drift is weak, 

the overall sample mean frequency     can be used to approximate     in the variance term 

and we obtain a joint distribution for the data vector     for all   individuals, at SNP  : 

                                      

Making the similar approximation 

                                                           

integrating out the population frequencies we have by properties of Normal distributions: 

                                 

Using the notation       , the likelihood is then: 

                        
    

            
 

           
         

                

Define 

a  
     

       
  

Let           Clearly   is normally distributed: 



17 
 

                                   
          

       
    

Thus,   has mean    and variance which decreases as we increase sample size.   

We can rewrite the exponent term in our likelihood: 

 

         
                             

                    

                                                    
             

                            
     1                    

            

                            
                                 

  

                                   
  

and substituting back in we find: 

                        
    

            
 

           
                     

              
    

               
        

                         
 

           
                

              

where only the final term in the likelihood depends on      

Intuitively, we view   as a weighted mean of the individual allele counts, specifically as an 

estimator of the ancestral allele frequency   . We have shown that   is a sufficient statistic 

for estimating     Further we can then write  

                           

The ancestral allele frequency at an individual SNP is often not of direct interest in 

inferring structure, and is typically integrated out of the likelihood as a nuisance parameter. 

Therefore, suppose that we have placed some prior distribution   on   . (For example, the 

original implementation of STRUCTURE uses a        prior for  .) We will also suppose 

that in most practical settings, this prior is relatively diffuse while the data are more 

informative, so that over the support of         we may view   as unvarying:       

    . We now may approximately integrate out the ancestral allele frequency to give 

unconditionally: 
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In our setting, we are interested in inferring structure. Thus, terms that concern us in the 

likelihood are only those that depend on this structure, which is wholly characterised by the 

covariance matrix    and so up to a constant of proportionality: 

                                   
 

           
                       

In the large-sample size setting, this likelihood approximates the truth and contains almost 

all available information about population structure (ignoring information present in the 

overall average allele frequency   at a given SNP).  

We must take only one more simplifying step, and that is to rewrite the above in terms of 

    rather than  . Specifically, note that: 

                          
               a        

      
    

       

       
       

       

       
       

      
      

          

       
       

     
   

    
     

 

     
          

       
     

   

    
      

           
 
     

          

       
            

where in the last line,      is simply the overall (unweighted) sample mean frequency. Finally, 

we have an approximate likelihood contribution for SNP  : 

           
 
           

 
      

 

           
          

 
    

 
     1    

       
               

Given a set of drift parameters, and observed data     for SNP    the likelihood can readily 

be calculated for inference purposes. However, the more useful feature of this 

approximation is that it makes it straightforward to combine information across loci, which 
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we show leads to a strong link between certain forms of the principal components matrix, 

and model-based approaches using likelihoods of the general form discussed above. 

Linking the PCA/coancestry matrix and the model-based approach 

Under our simplifying assumptions, we can now obtain a likelihood for the entire dataset 

by multiplying likelihoods across (unlinked) loci. The result is given by the following 

proposition, which easily extends to the genotype case. 

 

PROPOSITION 2 

Suppose we have haploid variation data where sites are treated as unlinked (A1), that we 

sample             individuals from each of   underlying populations, where each    is 

large, and that we exclude very rare SNPs (A2-3). Consider a general model of normally 

distributed allele frequency drift at each locus, with an individual level drift covariance 

matrix  . If the prior placed on the ancestral allele frequency is weak (A8), and if we 

assume there is no information about drift from the overall allele frequency of each 

mutation in the sample (A6), then the likelihood of the data   can be approximated solely 

in terms of the “Eigenstrat” PCA matrix   from Proposition 1: 

            
 

 
             

 

 
            

 
 

 
          

   
   

     
  

   
  

 

 

   

 

   

     

 

   

   

where        

Hence in this model, all available information regarding the underlying population structure 

is contained in the PCA matrix. 

Proof: 

The stated assumptions mean that the result derived in Preliminary Proposition 2 holds. 

Hence, multiplying the likelihood across   independent sites we obtain: 
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(noting that the last term in the exponent is a constant, so does not affect proportionality: 

this is included to avoid a large term in the exponent for    ), from which the required 

result is immediate by properties of determinants.   

This result is general for the study of datasets containing mainly common mutations. It 

applies in both models incorporating discrete population structure, and also in no-linkage 

admixture models, where sample size is in a sense “large”, in that the Normal 

approximation to the likelihood still applies. An implication is that apart from the weak 

information contained in the average allele frequencies of mutations across groups, and 

neglecting information from occasional variants that reach loss or fixation in some groups 

(expected to occur for stronger drift), the Eigenstrat style PCA matrix contains all the 

available information about population structure. Thus in these models, we expect model-

based approaches to generally only succeed if there is a signal of structure from the PCA 

approach, as has been observed previously in practice (S5). 

S4.3: Asymptotic behaviour of models of population structure, with 

weak drift 
If population structure is strong, we anticipate that all reasonable approaches are likely to 

identify it. Of more interest is then the setting where population structure is weak (in a 

sense we will specify precisely below). In this section, we show that in the setting of weak 

structure the likelihood of a particular underlying drift matrix   has a particularly simple 

approximate form. This likelihood is a function of our coancestry matrix. Further, we show 

that the likelihood form is approximately equivalent to that obtained by assuming that an 

appropriate rescaling of the coancestry matrix yields a multinomial distribution. Thus, in 

the weak drift case and for unlinked sites, the likelihood form we use in the main text (with 

an appropriate choice of scaling parameter) approximates the full likelihood of the data. (In 

the next section we will show how we generalise these ideas to the linked case, and describe 

our approach for estimating  .)   

PROPOSITION 3: ASYMPTOTIC BEHAVIOR FOR SUBTLE POPULATION STRUCTURE 

Assume that the conditions of Proposition 2 hold (A1-3,A6,A8), and also assumptions A4 

and A5, where (A5) is precisely that the drift is small in the sense that order    and higher 

terms are negligible.  The likelihood given by Proposition 2 can be simplified to 
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Where   is the row and mean zero’d drift matrix with         
 

 
    

 

 
    

 

  
   , 

and     
 

 
     

 

 
  is the per-locus PCA matrix. 

Proof: 

We will approximate terms in the likelihood shown in Proposition 2. Recalling      , 

under assumption A5 we then have correct to second order: 

 

              

   
            

     

                  
 

 
    

 

 
   

  
 

   
     

     

            
 

 
      

                    
 

 
          

We start with the likelihood from Proposition 2: 

            
 

 
             

 

 
            

 
 

 
          

   
   

     
  

   
  

 

 

   

 

   

     

 

   

   

Again correct to second order and after a little simplification we find: 

 

 
          

   
   

     
  

   
  

 

 

   

 

   

     

 

   

  
 

 
             

   
 

 
       

 

   

 

   

  

Note that viewing the PCA matrix as estimating the drift, and evaluating the expected 

asymptotic values for this matrix without drift as   becomes large, we have      
 

 
     

 

 
         in large datasets, unless    . For the     case write 

 

 
     

 

 
       . Again, for large datasets,             is small. Then, correct to second 

order in     we have: 
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Substituting into the likelihood: 

            
 

 
        

 

 
        

 

 
 
 

 
    

 

 
       

 

   
     

  

 
 

 
           

 

   

 

   

  
 

 
    

 

  
     

  
 

 
            

        
 

 
     

    

and after simplification, we obtain 

             
 

 
 
 

 
        

 

 

 

 
       

 

 
 

 

   
     

   
 

 
          

 

   

 

   

   

             
 

 
        

 

 
       

 

  
     

           

 

   

 

   

    

We now substitute         
 

 
    

 

 
    

 

      , which clearly has zero row and 

column means, so     is the relative drift among individuals.  Further, by expansion of the 

desired result it is clear that all other terms from    
 

 cancel, and    
  is a constant 

independent of the parameters so can be included or excluded in the proportionality. The 

result immediately follows.   
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Discussion of Proposition 3: 

This is the key result; to second order the likelihood only depends on the data through the 

usual principal components matrix   which is transformed to give    , and the transformed 

drift matrix  . Hence only the relative drift   is identifiable from data, and the absolute 

overall value of drift cannot be inferred. Further, the likelihood behaves asymptotically as if 

the transformed entries     in the principal components matrix are independent and 

normally distributed, with mean   and variance 
 

 
.  

We have used a series of approximations in deriving this result, which suppose essentially 

that the sample size is large, while drift is small. Examining the latter assumption in more 

detail, it can be seen that our approximations require the setting  
   

 
  , so the average 

drift is small compared to 
 

 
. By Price et al. (2009), overall structure is strong if  

   

  
  

 

  
 

In this setting, our assumptions may not hold but we expect (and see in practice) all 

competitive approaches to perform well and identify structure. In the case where structure 

is much weaker, then for some non-negative   we can consider: 

   

 
   

 

 
 

which will be considerably less than 1 provided    , as is usually the case in current 

genetic studies where there are many more markers than individuals. Nevertheless, it is 

clearly important to evaluate the performance of both our approximation to the likelihood, 

and the resulting inference framework, via simulation, which we do extensively in Section 

S6. The results verify excellent agreement between the theory and observed results. 

S4.4: fineSTRUCTURE model 
The likelihoods as written above produce a dimension reduction by avoiding the need to 

consider SNPs individually. However, this likelihood is not particularly convenient to work 

with directly – neither is it straightforward to extend to incorporate LD information. It is 

more natural to attempt to perform inference based on our coancestry matrices, which give 

expected counts, and do extend immediately to the LD case, while still giving a dimension 

reduction. We showed above that these matrices also relate closely to the PCA matrix, 

which our approximate likelihoods are defined in terms of.  



24 
 

For count data (and by extension our expected count data matrix), a natural model is the 

multinomial distribution, which is a member of the exponential family of distributions, 

enabling the use of computationally convenient conjugate prior choices. Although we have 

expected counts, we may nevertheless consider a model of the same form, where 

individuals are ordered. In general, we allow ourselves to multiply the count matrix by a 

constant     before applying the likelihood. We can view this as calculating an effective 

number of loci across the genome. 

In this section, we first attempt to identify a relationship between parameters in this 

multinomial likelihood, and the STRUCTURE model. The parameter in a multinomial 

model, for group  , is the probability an observation falls in this bin. Suppose we consider 

a general multinomial distribution for our setting, where we have a mean probability     

that individual   copies a SNP (or a chunk) from individual  . It is immediate from 

Proposition 1 that if   is large,    , the expected count proportion for individual   from 

individual   is expressible in terms of the expectation of the PCA matrix and to order   : 

      
 

 
     

 
 

   
 

 

   
  

 

 
     

 
 

 
 

 

   
       

 
 

 
 

 

   
     

so we can relate this parameter to the individual by individual relative drift matrix  . Note 

we could conceptually also include the case    , even though we have disallowed self-

copying in practice. 

PROPOSITION 4: ASYMPTOTIC BEHAVIOUR OF THE MULTINOMIAL LIKELIHOOD 

Assuming A1-6 and additionally (A7) that the whilst both the population size   and 

number of loci   are large, additionally     
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has the same asymptotic form found in Proposition 3, with (for haploids) the choice  

         . 

Proof and derivation: 

The expected total number of chunks copied by individual   from each other individual   is 

large provided drift is small and the number of loci is large compared to the number of 

individuals. 

 We again employ the central limit theorem, this time relying on the fact that the number of 

loci is large. We approximate the joint distribution of the counts    using a multivariate 

normal distribution of dimension     (because           this entry is therefore 

removed from the likelihood).    is the count vector,        is the expected number of 

counts, and    is the model covariance matrix for row   with the other rows  . Since 

            , we can avoid having to use the generalised inverse directly, and have the 

standard likelihood form: 

            
     

 

         

     
  

  
 

          
 

    

 

         

  

      
     

 

         

     
  

  
 

          
 

   

 

         

   

where            is the empirical frequency of copying from individual   from individual 

 .  Then since     
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Using Proposition 1, and noting that                : 

     
         

   

 
   

 

         
    

 
          

                     

Substituting for    , and discarding lower order terms in  , we have: 
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where     is defined as above, and where in the final line we include an additional term in 

the exponent corresponding to    , assuming that the relative contribution of this single 

within individual term to the likelihood is small if   is large.  

The first term in this likelihood can be ignored for two reasons.  Firstly, we can incorporate 

this term into the prior distribution on    since it does not depend on the data or the 

number of loci or individuals except for a constant of proportionality, for example by 

fitting the prior variance in copying fractions based on the data.  Secondly, the contribution 

of this term is small.  Substituting                        we have: 

     
 

 
  

 

         

   
      

      
  

  
         

 

   
     

 

         

  

  
      

      
  

  
   

 

   
     

 

 
 

 

   
 
 

   
    

 

         

 

  
      

      
 

  
 

 

   
 
 

    
 

 

     

   

(Here we have discarded higher order terms in N and  , and noted that rows of   sum to 

0). The constant term can be incorporated into the proportionality, and the term inside the 

exponent is small compared to the remaining term in the likelihood.  Choosing   
  

      
 

 

   
       , we see that for small drift (   ) we can discard the above 

term, leading to: 
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On simplification and discarding higher than second order terms in the drift we have 

            
 

 
           

 
 

   

 

   

  

which precisely matches the form we derived in Proposition 3.   

Thus by choosing   
 

   
, our multinomial likelihood can be viewed as approximating the 

likelihood used by STRUCTURE run on the same data, at least in the case of a large 

number of unlinked loci, many individuals, and weak drift.  Extension to the diploid case is 

trivial by substituting         into  
 

      
 , giving   

 

   
 in this case. 

Discussion of Proposition 4: 

The above results motivate the extension that modelling the coancestry matrix as 

multinomial may be appropriate even in the case where linkage disequilibrium is present, 

particularly when the number of loci is large, provided an appropriate value is chosen for  . 

In the unlinked case, the value   
 

   
 (for haploids) can be viewed as an adjustment for 

the fact that the variance of the entries in the count matrix is overestimated by the 

multinomial likelihood. Indeed, if structure is weak, the true counts variance is 

approximately a factor     lower than that given in the multinomial model. Further, the 

symmetry of the matrix gives an additional factor 2 for the off-diagonal terms yielding 

  
 

   
. Noting that the multinomial distribution is generally approximated by a 

multivariate normal, we suggest that in general the multinomial model may still give a 

reasonable approximation, provided we use a value of   equal to twice the ratio of the 

correct underlying variance of the coancestry matrix to the “multinomial” estimated 

variance (at least if structure is “weak” – in the strong structure case results are insensitive 

to the value of  ).  

In the general case it is not possible to analytically identify  , so we instead estimate the 

true underlying variance of the number of chunks copied using a bootstrapping approach, 

calculate the required ratio using the genome-wide copying fractions, and substitute in this 

value of   into the likelihood. The above theory demonstrates that this approach will work 

in the simple unlinked loci case at least. In Section S6 we demonstrate that the bootstrap 

approach leads to the same value of   as the theory in the no-linkage case, and additionally 

works well in the linkage case using our copying model. 



S5 Simulation Procedure

Genetic recombination maps were produced as described by the
International HapMap Consortium (2007). Each map corresponds to the fol-
lowing regions of the genome (in cM): 6.946, 12.265, 3.423, 8.391, 2.888, 2.140,
8.708, 3.323, 8.531 and 11.764. Each is a cumulative distribution function describ-
ing the relative rate of recombination in the 5Mb region, along with an overall
recombination rate <rho>.

For each of the 10 genetic maps, we generated 20 regions of length 5Mb by
running the program SFS CODE (Hernandez 2008) 20 times with the command:

sfscode 5 1 -Td 0 0.3133
-TS 0.087084 0 1 -TS 0.087084 0 2 -TS 0.094777 1 3 -TS 0.102469 2
4 -TE 0.110162 -Tg 0 26.861714 -N 5000 -n 100 -A -L 999 ... -l p 1 --rho F
<recmapfile> <rho>

where ... is 998 entries of 5003 followed by 5009. This is a trick to create a
region of exactly 5Mb consisting of 999 linked regions at distance 1 from each
other each of approximate length 5000 bases (the remaining bases are gaps). This
split is required for efficient simulation. This generates 20 individuals from each of
5 populations with a split structure described in Figure 2A of the main text, using
a model with exponential growth following a bottleneck; consult the SFS CODE
manual for details. This generates a sample of 100 individuals per population; the
first n from each were sampled where a smaller number was required. The output
of each of the 200 runs was converted to phase format using a script written in
R (R Development Core Team 2009). We then used ChromoPainter to perform
painting on the output of each region independently in order to get 200 coancestry
matrices. Coancestry (i.e. chunk copy count) matrices are summed, and when
less than 200 regions are used they are ordered to give an even contribution from
the different genetic maps.

Note that although we do not use them here, chunk length and mutation count
matrices are available. These can be combined across runs as follows: chunk length
matrices are averaged with weights given by the number of counts, to give the
average length of a chunk. Mutation matrices are averaged with weights given
by (length matrix times count matrix) to obtain mutation rates (proportional
to) per site. Our software includes ‘ChromoCombine’, a tool to combine multiple
ChromoPainter files as described above which is helpful for parallelization of large
(e.g. genomic) datasets.
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S6 Empirical validation of c

S6.1 Calculation of c

We first segment the genome into contiguous segments of constant number of
chunks d. The number of chunks donated to individual i from j in segment k is
xijk, and d is chosen such that xijk is approximately independent (for different
k and conditional on i and j). This means that different individuals may have
a different number of segments if they have different patterns of recombination.
In practice, we found that d = 100 works well for the HGDP data, but due to
the high LD present in the linked simulation data, there were only an average
of 20 chunks per region. We therefore took the whole region to be a segment in
this case and computed c using the full 200 region dataset. Then we compute
sij =

∑
k(xijk) and s2ij =

∑
k(x

2
ijk). If individual i has Ri segments in total,

we can calculate the theoretical variance for xij by first estimating the rate of
inheriting from each other individual P̂ij = sij/

∑
j sij and substituting into the

multinomial variance:

VT (xij ;Pij) ≈ VT (xij ; P̂ij) =
∑
j

sijP̂ij(1− P̂ij)/Ri

The empirical variance is:

VE(xij) =
s2ij

Ri − 1
− (sij)2

Ri(Ri − 1)

This leads (with correction for the known overcounting factor of 2) to the estimate
of c:

cij = 2
VE(xij)

VT (xij ; P̂ij)

and we simply take the mean value as our estimate:

c =
1

N(N − 1)

N∑
i=1

N∑
j=16=i

cij

Note that we provide a helper program called ‘ChromoCombine’ that calculates
this, and which can easily use the two options of d described. It also handles
summation of multiple files in case of parallelization was used for processing in-
dividuals and/or chromosomes separately.

S6.2 Validation

In this section we present evidence of the effect of varying the rescaling factor ‘c’
on inference. Note that we view c as a summary of the data in the same way as
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the coancestry matrix X, and not as a parameter - it is therefore not appropriate
to perform inference for it in the standard Bayesian way.

For interpretation of the empirical evaluation presented, we note that when c
is ‘too large’, the effective number of chunks is reduced and therefore any mistakes
in population assignment will tend to be under-split, i.e. we will not distinguish
efficiently between similar populations. When c is ‘too small’ our model believes
it has more independent chunks than is true and therefore will tend to over-split
populations. The smallest c that does not over-split is called efficient, and larger
c are called conservative.

We start with the unlinked model in the case where there is no population
structure. Provided population sizes are large, we expect the theoretical results
derived in Section S4 above to hold. Specifically, the theoretical prediction (for the
approximately correct data likelihood) in the case of unlinked data is (Proposition
4 of Section S4.4):

F (x|p) =
N∏

i=1,j=1

(
Pqiqj
n̂qj

)xij(n−1)

(S24)

which is equal to Equation 1 of the main text:

F (x|p) =
N∏

i=1,j=1

(
Pqiqj
n̂qj

)xij/c

(S25)

when c = 1/(n− 1).
For this section we have generated datasets containing 15000 non-rare (> 5%

allele frequency) unlinked SNPs (at varying N) under the same splitting scenario
as the main text. Simulation for each SNP was by a) generating the ‘ancestral
frequency’ f with p(f) ≈ 1/f (since this is not a probability distribution, we first
choose which of 20 bins in the range 0 and 1 the SNP is from, then sample f condi-
tional on this), then b) applying a normally distributed drift matrix for population
level drift Σ, giving population level frequency vector g ∼ MVN(f , f(1 − f)Σ),
and c) sampling individuals SNP values according to this frequency. (SNPs with
empirical frequency below the 5% threshold were resampled). The covariance
matrix for the drift was:

Σ =


0.02 0 0 0 0

0 0.02 0.015 0 0
0 0.015 0.02 0 0
0 0 0 0.02 0.01
0 0 0 0.01 0.02


The theoretical prediction is compared to our empirical estimate of c on this

dataset in Figure S1 which shows that our theoretical understanding of c is correct,
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i.e. that the correlation with the truth is 1 at the predicted value and that both
the theoretical and empirical estimates of c are approximately efficient and equal
for large N . The empirical estimate is conservative for small N .
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Figure S1: Correlation with the truth for 15000 non-rare (> 5% allele frequency)
unlinked SNPs with a varying number of individuals and with varying chunk
scaling c, when there is no true population structure. Black indicates perfect
correlation, which is always achieved at the theoretical (black line) and empirical
estimated (dots) values of c. (Note that at N = 40 the correlation is perfect at
the theoretical value of c, but not at c = 0.02, the nearest point on the grid.)

Our empirical estimate of c is also applicable in the case of linked data, whether
using our linked or unlinked models. For the linked simulated data described
in the Results section of the main text, we perform a similar scan of c and N
to check that our algorithm is computing an appropriate value of c in realistic
circumstances. Figure S2 shows these results.

The value of c estimated by the empirical method again appears to be con-
servative for small N and approximately efficient for large N . In both cases, the
‘truth’ (if obtainable from the data) is still obtained for a very wide range of c′ > c
i.e. greater than the estimated value. This demonstrates that exact specification
of c is not an important issue for many practical purposes.
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Figure S2: Correlation with the truth for linked data with a varying number of
individuals and with varying chunk scaling c, with the 5 populations described
in Figure 2 of the main text (and 150 regions of data). Left (a) is for the linked
model, Right (b) is for the unlinked model. The empirical estimated values of c
are shown as dots.

Note also that the value of c is significantly larger for linked data (in both
the linkage and no-linkage models) than for the case of unlinked data. When
the unlinked model is used, correlations between neighbouring loci due to linkage
disequilibrium increase the variance between regions. When the linked model is
used, c values do not fall substantially below 1, even for very large population
sizes. Intuition behind the different behaviour of the linked and unlinked models
comes from considering the uncertainty in chunk assignment. For the unlinked
model, the number of haplotypes which a particular allele is identical to increases
linearly with sample size. For the linked model, each addition individual in the
sample has the chance of having a haplotype that is a still better match than
any preceding haplotype. For this reason, the uncertainty of assignment of each
haplotype does not change substantially as additional individuals are added.

We now describe a scenario in which neither the theoretical nor the empirical
estimate of c work well; this is because there is not a single suitable value of c
for which our model holds in this case. This is the case of unlinked markers with
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strong differentiation between populations, large numbers of markers and large
sample sizes (Figure S4). Here the estimated value of c gives confident assign-
ment of incorrect splits. The model predictions break down because individuals
within the same population all share SNPs with individuals in other populations.
If genetic drift is strong at individual SNPs, then sharing this coancestry can
give inappropriately weighted information that the individuals are related to each
other. In other words, the assumptions of Section S4, Propositions 3-4 do not
hold.

It is important to note that this problem is less dramatic in linked data, and
essentially does not arise in the linked model. To see why, we note that these
correlations arise when an (unlinked) SNP is found in a individual that is com-
mon in another population but rare/absent otherwise. Such SNPs can only arise
through strong drift, are not excluded because they are not rare overall, and are
interpreted as overly strong evidence of shared ancestry. As N becomes large
with population sizes na ∝ N , most SNPs provide O(N−1) information on popu-
lation level copying proportions (which is why c = O(N−1)). However, strongly
drifted SNPs provide O(1) evidence because they are shared with a high fraction
of another population, and not with any other individual. For (truly) linked data,
such a SNP will be down-weighted due to the average level of correlation between
nearby SNPs, so even in the unlinked model we will infer a larger value of c. For
the linked model, all chunks are approximately unique and therefore provide O(1)
information per chunk, so a strongly drifted SNP will not have a dramatic influ-
ence since all chunks are already ‘strongly drifted’. The success of our algorithm
for simulated linked data also supports this argument.

For the strong drift and unlinked case, we have developed an alternative algo-
rithm in which the likelihood is modified so that these correlations are accounted
for. We do this in effect by considering only within-population counts as impor-
tant, so that when considering a merge move, the between-population counts are
normalised to have the same mean. We re-normalise using:

x′ij = xij −
∑

k∈qi xkj

|qi|
−
∑

l∈qj xil

|qj |
+ 2

∑
k∈qi

∑
l∈qj xkj

|qi||qj |
(S26)

where qi is the index of the population for individual i, and |qi| is the number of
individuals in that population. This corresponds to ensuring that all row and col-
umn sums copying from population b to population a are equal. This is illustrated
in Figure S3 which shows the coancestry heatmap for the unnormalized and nor-
malised cases, as well as the difference between them. The coancestry heatmaps
are visually very similar, but the undesired correlation structure is clearly visible
in this difference. Some individuals have an elevated number of donated chunks
to all individuals within a specific population, leading to a ‘striped’ pattern. The
bottom plots show the same thing but where we consider a potential merged pop-
ulation (merging the most recent split). It is clear that the presence of population
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structure is preserved under this procedure because the two populations have
a different profile within the population being merged. Therefore the standard
likelihood applied to both the merged and split matrices can correctly identify
both populations due to their different rates of copying within and between, and
additionally it is not mislead by the correlated copying from other populations.
However, were the only distinction between populations B1 and B2 the copy rate
from some third population, this would be normalised out.
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Figure S3: Left: the raw coancestry matrix for the same scenario as simulated in
the main text but with 15000 unlinked SNPs. Centre: the renormalized coances-
try matrix based on the true population distribution. Right: The difference,
highlighting the correlated nature of the error terms for the coancestry matrix
(there are differences for the merged B1 and B2 populations only). Top: These
matrices based on the ‘true’ population structure given by the labels. Bottom:
These matrices based on merging the most recent split, setting B = (B1, B2).

Note that our simple likelihood is not a well defined entity under this modifi-
cation, because the data depends on the population assignment. There is however
an implicit likelihood induced by the modification of the data which is well defined
and is correctly comparable both within states of a given number of populations
K and for states of differing K, provided that we consider moving an individual
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Figure S4: Demonstration of how our model breaks down in the presence of
strong population structure and unlinked data, and our method for fixing this.
This figure shows the correlation with the truth for 15000 non-rare (> 5% allele
frequency) unlinked SNPs under the simulation demographic model described in
the main text. Left: results for the raw data. Right: results for the modified data
matrix x′ as described above.

between two populations as creating a merged state between the two populations
(which defines the normalisation), and creating a split state corresponding to the
move.

Although this procedure is more robust than the use of the raw coancestry ma-
trix, it is not recommended for general use because firstly, it discards information
about a split that comes from differential chunk counts from other populations,
and secondly, it is not a clearly defined model. We have tested this procedure on
the HGDP data (unlinked model, results not shown) and obtain broadly similar
results to those quoted in the main text with some subtle splits lost: for exam-
ple, the Tuscan/Italian split is not fully supported. We recommend using it as a
conservative check if the value of c is very low (say less than 0.05) and there is
strong structure in the dataset.
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S7 Comparison to STRUCTURE

We have shown that in theory, and in the unlinked model case, STRUCTURE and
fineSTRUCTURE are using approximately the same data and the same model,
under certain limiting conditions. It is important to assess how these conditions
apply in practice. Figure S5 shows the correlation with the truth, as the number
of SNPs changes, for both fineSTRUCTURE and STRUCTURE for N=100 indi-
viduals sampled from the same population structure as described in the main text
for the unlinked case. From this figure two things are evident. Firstly, at low SNP
numbers, STRUCTURE outperforms fineSTRUCTURE by a small margin. How-
ever, as the number of SNPs increases, STRUCTURE does not keep improving its
performance due to two effects. Firstly, it becomes very difficult to mix the SNP
frequencies with the other parameters, and so the MCMC sampling becomes poor.
We can see this by starting STRUCTURE both at the truth and from random
starting locations; for large numbers of SNPs it fails to find even an adequate K=3
solution (we here show the best solution found in several runs). Secondly, the prior
(F-model) STRUCTURE uses assumes independent drift for all populations, and
scales with the number of SNPs. Therefore the correlated drift observed in this
population scenario looks equally unlikely in the model regardless of the number
of SNPs, and even when started at the truth STRUCTURE favours lower values
of K. Although fineSTRUCTURE also does not have explicit correlated drift in
the prior, the prior does not scale with the number of SNPs and therefore the data
can overwhelm any prior structure placed on the coancestry matrix. This leads to
slightly conservative splitting at all scales, as we must have positive evidence of a
split, hence the very abrupt change from a K=3 to a K=4 solution (and similarly
for K=5).

From the theory, we would expect that as the number of individuals increases,
fineSTRUCTURE tends towards the STRUCTURE performance at lower SNP
counts. The message from this comparison is that the loss of information in
performing the summary step is not high for datasets with hundreds of markers,
but that if few, genuinely unlinked markers are used, the STRUCTURE model is
preferable. For larger numbers of markers, fineSTRUCTURE is to be preferred
even if the markers are unlinked.
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Figure S5: Correlation with truth for (black) fineSTRUCTURE and (red)
STRUCTURE as a function of the number of unlinked SNPs. Data are simulated
as above, with all SNPs having minor frequency > 0.05. The fineSTRUCTURE
results are based on the unlinked model as described above, and the STRUC-
TURE results are based on the no-admixture model using the ‘F model’ prior
started at the best possible configuration for a particular K. Optimal correlations
are obtained at this configuration when there is no uncertainty in the assignment.
Note that the scale is logarithmic to emphasise the behaviour with few SNPs.
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S8 ADMIXTURE linked simulations analysis

For the linked simulations we have compared our results with the program AD-
MIXTURE (Alexander, Novembre, and Lange 2009). ADMIXTURE computes
the same likelihood as STRUCTURE but performs maximum-likelihood anal-
ysis, i.e. it does not perform MCMC sampling and does not apply a prior.
This makes is significantly faster and avoids many mixing problems, and is eas-
ily applicable to the HGDP dataset. To perform this analysis, we took the
same phased haplotype data used as input for ChromoPainter and converted
it to PLINK format (Purcell, Neale, Todd-Brown, Thomas, Ferreira, Bender,
Maller, Sklar, de Bakker, Daly, and Sham 2007) (PLINK version 1.07, down-
loaded from http://pngu.mgh.harvard.edu/~purcell/plink/) using which we
extracted the SNPs with minor frequency > 0.01. The filesizes were too large for
manipulation within PLINK with 200 regions and therefore we used a minor fre-
quency cutoff of 0.02 in this case. We then ran ADMIXTURE for various numbers
of populations K and for varying number of regions.

We here show the details of the ADMIXTURE results since direct comparison
between the methods is not possible, fineSTRUCTURE being an MCMC based
no-admixture model and ADMIXTURE reporting only maximum-likelihood ad-
mixture results. The correlation reported in the paper is created by forcing the
admixture solution to choose the most likely population for each individual; how-
ever, performing the correlation on the admixed solution does not change the
results qualitively.
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Figure S6: ADMIXTURE results for simulated data at 25 linked regions. Top:
cross-validation error (lower is better). True populations are separated by a black
line. The maximum correlation with truth is obtained at K=3.

Figure S7: ADMIXTURE results for simulated data at 50 linked regions. Top:
cross-validation error (lower is better). True populations are separated by a black
line. The maximum correlation with truth is obtained at K=3.
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Figure S8: ADMIXTURE results for simulated data at 75 linked regions. Top:
cross-validation error (lower is better). True populations are separated by a black
line. The maximum correlation with truth is obtained at K=3.

Figure S9: ADMIXTURE results for simulated data at 100 regions. Top: cross-
validation error (lower is better). True populations are separated by a black line.
The maximum correlation with truth is obtained at K=4.
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Figure S10: ADMIXTURE results for simulated data at 150 regions. Top: cross-
validation error (lower is better). True populations are separated by a black line.
The maximum correlation with truth is obtained at K=4.

Figure S11: ADMIXTURE results for simulated data at 200 regions. Top: cross-
validation error (lower is better). True populations are separated by a black line.
The maximum correlation with truth is obtained at K=4.
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S9 ADMIXTURE HGDP Europe analysis

For the European HGDP dataset we have compared our results with the program
ADMIXTURE (Alexander, Novembre, and Lange 2009). ADMIXTURE com-
putes the same likelihood as STRUCTURE but performs maximum-likelihood
analysis, i.e. it does not perform MCMC sampling and does not apply a prior.
This makes it significantly faster and avoids many mixing problems, and is eas-
ily applicable to the HGDP dataset. To perform this analysis, we took the
same phased haplotype data used as input for ChromoPainter and converted
it to PLINK format (Purcell, Neale, Todd-Brown, Thomas, Ferreira, Bender,
Maller, Sklar, de Bakker, Daly, and Sham 2007) (PLINK version 1.07, down-
loaded from http://pngu.mgh.harvard.edu/~purcell/plink/) using which we
extracted the SNPs variable in Europe with minor frequency > 0.01 and merged
the chromosome 1–22 data leaving 585420 SNPs. We then ran ADMIXTURE for
various numbers of populations K.

The results of this analysis are shown in Figure S12. The ADMIXTURE anal-
ysis requires that the user specify the value of K. In the standard (Bayesian)
STRUCTURE approach, this can be estimated by computing the marginal prob-
ability of the data given the model with a particular K. The Bayesian approach
with this model is however not feasible in the HGDP dataset. There is no ro-
bust way to compute the marginal probability in the maximum-likelihood setting
and therefore ADMIXTURE instead tries to minimise the ‘cross-validation er-
ror’, that is, the error in predicting the value of a SNP under a cross validation
scheme. In general this should be high both when the model is too simple or when
it is overfitted. However, the HGDP dataset has a large number of uninformative
SNPs and as Figure S13 shows the cross-validation error is minimised at K = 1.
This occurs in part because the between-population variance is small compared to
the within-population variance and hence adding population structure doesn’t aid
prediction. We are interested in explanatory power rather than prediction, and
therefore have decided in the paper to show K = 7 which seems to capture many
of the features in our fineSTRUCTURE analysis without obvious overfitting. We
expect that the cross-validation error varies across SNPs and that higher K could
be obtained by appropriate restriction to only informative SNPs.

As a check, we also used PLINK to perform linkage-based trimming of SNPs
as suggested in the ADMIXTURE manual; this left a dataset of 121613 SNPs
and provided broadly the same results (not shown). This shows that linkage
disequilibrium has not dramatically distorted the analysis. We have discussed
the results in the main text; we note here that the results as K is increased
demonstrate an interesting pattern of successive population identification that
correlate with our identification of populations that have drifted since admixture.
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Figure S12: ADMIXTURE results for the HGDP Europe dataset for a range
of K as described in the text. Dashed lines separate fineSTRUCTURE popula-
tions, solid lines separate labelled populations. fineSTRUCTURE agrees with all
labelled populations with the exception of the Tuscan/French.

S10 Results for HGDP data

The full coancestry matrix for the world is given in Figure S14. Note that the
colour scale is non-linear and that small changes produce a large colour change
at the lower end of the scale; this does however correspond roughly to meaningful
changes since these colours are present at higher frequency in the matrix, and
therefore small variation at this scale may be picked up by the model as it can
involve many individuals.

We now focus on the Continental analysis. Continents are defined according
to Table 1. Subcontinents are defined in Figure 4 of the main text. Note that the
same groupings appear in Figure S15, but at a different height due to a different
number of sub-populations found in each and therefore cannot be ‘cut’ at a single
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Figure S13: ADMIXTURE cross validation error as a function of K.

Continent Populations
Africa San, BiakaPygmy, BantuSouthAfrica, BantuKenya, Mbu-

tiPygmy, Yoruba, Mandenka
America Colombian, Pima, Surui, Maya, Karitiana

Central South Asia Makrani, Uygur, Brahui, Burusho, Sindhi, Balochi, Hazara,
Pathan, Kalash

East Asia Cambodian, Mongola, Oroqen, Xibo, Yi, Tu, Naxi, Daur,
Hezhen, Han, Tujia, She, Japanese, Yakut, Dai, Lahu,
Han.NChina, Miao

Europe Adygei, French, Tuscan, Italian, Sardinian, Russian, Orca-
dian, Basque

Middle East Mozabite, Bedouin, Palestinian, Druze
Oceania Melanesian, Papuan

Table 1: List of populations assigned to ‘continents’ for PCA.

height.
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Figure S14: Whole world HGDP coancestry matrix. Some population labels are
omitted for clarity; this has only been done when the neighbouring population
contains the same labels and the exact distribution is recoverable from the tree
and Figure 4 of the main text. The colour scale is non-linear, and population
sizes have been square-rooted for clarity.
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Figure S15: Tree for all populations
found using inference in separate ‘sub-
continents’ as detailed in Figures S16
- S24. The interpretation is the same
as Figure 4 of the main text (except
that probabilities have been removed for
clarity).
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Figure S16: ‘Sub-continental’ coancestry matrix, for groupings as defined in Fig-
ure 4 of the main text. Recipient groups are on the left. Note that Africa has
been capped, and copies 232 chunks to itself.
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Figure S17: ‘Sub-continent’ of Africa coancestry matrix showing (bottom left) the
Population coancestry matrix and (top right) the Individual coancestry matrix.
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Figure S18: ‘Sub-continent’ of CentralSouthAsia coancestry matrix showing (bot-
tom left) the Population coancestry matrix and (top right) the Individual coances-
try matrix.
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Figure S19: ‘Sub-continent’ of Druze coancestry matrix showing (bottom left) the
Population coancestry matrix and (top right) the Individual coancestry matrix.
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Figure S20: ‘Sub-continent’ of EastAsia coancestry matrix showing (bottom left)
the Population coancestry matrix and (top right) the Individual coancestry ma-
trix.
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Figure S21: ‘Sub-continent’ of Europe coancestry matrix showing (bottom left)
the Population coancestry matrix and (top right) the Individual coancestry ma-
trix.
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Figure S22: ‘Sub-continent’ of MiddleEast coancestry matrix showing (bottom
left) the Population coancestry matrix and (top right) the Individual coancestry
matrix.
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Figure S23: ‘Sub-continent’ of NorthEastAsia coancestry matrix showing (bottom
left) the Population coancestry matrix and (top right) the Individual coancestry
matrix.
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Figure S24: ‘Sub-continent’ of Other populations (America, Oceania and some
Asian individuals) coancestry matrix showing (bottom left) the Population
coancestry matrix and (top right) the Individual coancestry matrix.
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S11 Convergence results
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Figure S25: Whole HGDP pairwise coincidence matrix showing (bottom left) the
run 1 and (top right) run 2. It is recommended to view this figure online and use
zoom tools.
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Figure S26: Africa pairwise coincidence matrix showing (bottom left) the run 1
and (top right) run 2.
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Figure S27: CentralSouthAsia pairwise coincidence matrix showing (bottom left)
the run 1 and (top right) run 2.
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Figure S28: Druze pairwise coincidence matrix showing (bottom left) the run 1
and (top right) run 2.
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Figure S29: EastAsia pairwise coincidence matrix showing (bottom left) the run
1 and (top right) run 2.
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Figure S30: Europe pairwise coincidence matrix showing (bottom left) the run 1
and (top right) run 2.
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Figure S31: MiddleEast pairwise coincidence matrix showing (bottom left) the
run 1 and (top right) run 2.
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Figure S32: NorthEastAsia pairwise coincidence matrix showing (bottom left) the
run 1 and (top right) run 2.
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Figure S33: Other populations pairwise coincidence matrix showing (bottom left)
the run 1 and (top right) run 2.
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S12 Principal Components Analysis for Continents

Note that these are performed on ‘continents’, i.e. pre-defined groupings of indi-
viduals based on labels.
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Figure S34: PCA (first 2 components) for the continent of Africa.
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Figure S35: PCA (first 2 components) for the continent of America.
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Figure S36: PCA (first 2 components) for the continent of CentralSouthAsia.
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Figure S37: PCA (first 2 components) for the continent of EastAsia.
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Figure S38: PCA (first 2 components) for the continent of Europe.
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Figure S39: PCA (first 2 components) for the continent of MiddleEast.
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Figure S40: PCA (first 2 components) for the continent of Oceania.
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