
Chapter 4
Free Surface Singularities: From
Singular Points to Spatio-Temporal
Complexity

Jens Eggers

Abstract I use interfacial flows as an introduction to self-similar phenomena and
scaling, my main examples being optics (wave fronts), and thin film dynamics. I
describe how similarity solutions can be used to describe singular behavior in higher
dimensions, where in general different spatial directions are characterized by differ-
ent scaling behavior. I then show how singular solutions develop complexity through
a sequence of instabilities. Combining chaotic dynamics with a higher-dimensional
description, one obtains a mechanism for spatial complexity, as it is characteristic
for turbulent flows.

4.1 Introduction and Overview

Free surfaces are a playground for nonlinear and emergent phenomena. One can
classify singularities roughly as being time dependent, such as the breakup of a fluid
drop, or being time-independent or persistent, such as the bright “caustic” lines one
finds looking inside a coffee cup. It is not clear this distinction is even useful, but let
us for the moment use it on physical grounds. For us singularities are points where
some quantity or a derivative thereof diverges, at least in some limit. We want to
argue that these are the crucial points around which everything else is organized.

4.1.1 Time-Dependent Singularities

In Fig. 4.1 we show the formation of a drop, which separates because surface tension
favors reduction of the surface area. The initial splash from which the drop forms
is produced by the impact of a drop into a glass of water, which produces its own
complicated dynamics. However, the expectation is that when the typical size of the
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Fig. 4.1 Left: a drop is pinching off from a splash produced by an impacting drop (Edgerton, 1977).
Right: In a different experiment, a drop ofmercury is pinching off. Using an electrical measurement,
the neck diameter is shown to behave close to d ∝ (t0 − t)2/3, see Burton et al. (2004)

fluid neck separating the drop and the splash has become much smaller than a typical
external scale L , its dynamics become independent of the means by which they have
been produced. Such a decoupling suggests that the local dynamics becomes scale
invariant, which is indeed confirmed by the power law behavior of the neck diameter
as a function of the time t0 − t to breakup at the right of Fig. 4.1.

For a fluid of low viscosity like water, the motion, driven by surface tension γ,
is opposed by inertia, which can be quantified by the density ρ of the liquid. Then
dimensional analysis suggests that the minimum radius hmin of the neck is

hmin = C
(

γ(t0 − t)2

ρ

)1/3

: (4.1)

a 2/3 power law, as confirmed by the experiment shown on the right of Fig. 4.1.
In fact, the dimensionless prefactor C ≈ 0.7 is also universal: independent of the
geometry or of the type of fluid (as long as viscous effects can be neglected). We will
however see below that there are numerous examples in which scale invariance can
be broken. Nevertheless, let us emphasize that the typical structure of a singularity is
self-similar. Another thought is that singularities represent the fingerprint of a PDE:
they summarizewhat can be said about the “internal” structure of a PDE, independent
of boundary or initial conditions.

Figure4.2 shows the reverse process of two drops of water coalescing; without
going into detail, this process is rather different from breaking. An energy balance
yields for the minimum radius rm of the bridge joining the two drops (Eggers et al.,
1999):

rm = Ci

(
γR
ρ

)1/4

t1/2, (4.2)
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Fig. 4.2 Coalescence of two drops of water, see Aarts et al. (2005)

Fig. 4.3 The formation of a jump in density in a shock tube (Griffith & Bleakney, 1954). The
interference fringes represent constant density. In the last panel, a jump in the density has occurred:
a shock

and where t counts from the moment of reconnection. Notice that the drop radius
R comes into play, so one is not constrained to the exponent 2/3 as in the case of
inviscid breakup: in fact, the exponent is now 1/2!

The formation of a shock wave, shown in Fig. 4.3, provides a link between time-
dependent and persistent singularities. Going from the first to the second panel, one
observes a steepening of the density profile, owing to the non-linear character of the
equations. In the third panel, a shock has formed, namely a discontinuous jump in
the density profile; this persistent structure then continues to propagate.

Figure4.4 presents an overview of cusp singularities, at which the surface is
deformed in such away that it ends in a point, with the two sides being asymptotically
parallel. What is remarkable is that shapes of this same type are seen in very different
physical systems. In the first example, the cusp forms on the surface of a viscous
liquid, which is wrapped around an impacting jet. In actual fact, the tip of the cusp
will be slightly rounded, owing to surface tension. Similar cusps are formed by the
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Fig. 4.4 An illustration of the “super-universality” of cusps. upper left: a cusp formed by the impact
of a jet onto a viscous fluid (Reyssat et al., 2008); upper right: various cusp-shaped folds in elastic
media (Hohlfeld & Mahadevan, 2011); bottom: a cusp caustic (Eggers & Fontelos, 2015)

folds of an elastic material, as seen on the right. Given the similarities between the
equations of (linear) elasticity and viscous fluid dynamics, this is perhaps not so
surprising. What is remarkable is that the same kind of cusps are formed by caustics,
i.e. lines of bright light in the reflection pattern of light (see the bottom of the figure).
We will come back to the description of caustics below.

The cusps shown above are essentially two-dimensional objects (although the
cusp structure may be unfolded to some degree into the third dimension). In that
sense an axisymmetric tip (see Fig. 4.5) is a simple three-dimensional analogue of
the cusp. Again, there is a remarkable variety of such tips, although it turns out that
not all of these cone-like structures are the same.While the “Taylor cone”, formed by
electric fields, is indeed a perfect cone, the opening angle of the fluid structures is not
strictly constant, but varies logarithmically with the distance from the tip (Courrech
du Pont & Eggers, 2020).

4.1.2 Summary of Fundamentals

Let us summarize what we have a learned, and let us also have some preview of
things to come:
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Fig. 4.5 Conical tips are seen very widely in fluid mechanics. Clockwise from the upper left: A
pointed drop in an extensional flow (Taylor, 1934); a Taylor cone (Pantano et al., 1994); the surface
of a viscous liquid emptying from a container (Courrech du Pont & Eggers, 2006); the pointed end
of a French bread (Eggers and Villermaux, 2008); a cone in a flow focusing device (Dong et al.,
2018)

Fig. 4.6 On the left, the breakup of a jet: the singular solution around the point of breakup is
completely universal, i.e. independent of parameters like the jet radius, or the kind of fluid. On the
right, a thin liquid film forms a bubble. Since surface tension is not longer a driving force toward
breakup, other non-linear mechanisms come to the fore. As a result, the means by which a film
breaks is highly non-universal, and even fundamental quantities like power laws depend on the
mode of breakup (Bertozzi et al., 1994; Kitavtsev et al., 2018)

1. Singularities are a recipe for new behavior and new structures to be created. For
example, at a pinch-off singularity a new structure, a drop, is formed.

2. Singularities are the “fingerprint” of a non-linear PDE, in that they reveal the local
structure of a solution. In some cases, this means that the singularity is universal,
as in the breakup of a fluid jet, see Fig. 4.6, left: there are no free parameters in
the solution, once it is written in “natural’ units, determined by the type of fluid,
ℓν = ν2ρ/γ as the length scale, and tν = ν3ρ2/γ2 as the time scale.
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The situation is very different for a sheet, as seen on the right of Fig. 4.6. In that
case, no “natural” mechanism for breakup exists, since a flat sheet minimizes
the surface area. Instead, breakup needs to be provoked from the boundary, or
there are additional variables. As a result, the singularity can be very different
in different circumstances, and even the value of exponents can depend on the
way the singularity is driven. Correspondingly, the equation allows for singular
solutions with a great number of free parameters.

3. The fundamental structure of a singularity is determined by self-similarity. This
means that a typical size ℓ of the singularity follows the scaling law

ℓ = ℓ0(t0 − t)α ≡ ℓ0t ′α : (4.3)

a power law, where α is the similarity exponent. If there is a change in scale, i.e.
ℓ is now measured with a different measuring stick, s times as long, we now have
ℓ/s, and

ℓ/s = ℓ0

(
t ′

s1/α

)α

.

In otherwords, a change in length scale canbe absorbed into a change in time scale:
the scaling law remains invariant, as expected from a law lacking a characteristic
length scale.

4. There are many different ways in which the scaling law (4.3) can be relaxed. For
example, for the collapse of a cylindrical cavity it was found (Eggers et al., 2007)
that ℓ ∝ t ′α(τ ), where the exponent is now a slowly (logarithmically) varying
function of time. Namely, if τ = − ln |t ′| is the logarithmic time distance to the
singularity, it was found that α = 1/2+ 1/

√
τ , see Eggers et al. (2007). This

means that the dynamics retain a (weak) “memory” of from where they started.
In particular, the observed exponent now depends on the initial condition, for
example the aspect ratio of the original cavity.

5. An even more interesting form of similarity is known as discrete self-similarity
(Choptuik, 1993). An example is

ℓ = t ′α
[
1+ b cos

2πτ

T

]
;

this means the length ℓ returns to the same place (up to a rescaling in size) only
after a period "τ = T . More exotic non-periodic versions can also be observed:
ℓ = t ′αg(τ ), where g is a non-periodic, possibly chaotic function.
The conclusion of this is that there are mechanisms for spatially localized singu-
larities to produce temporally complex results (as if new music was invented all
the time as one proceeds downward in scale). However, this is not yet a recipe for
spatially complex structures.

6. Instead a one-dimensional structure can be spread out into higher dimensions
by the mechanism of unfolding. Consider a singularity that is developing along
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the x-axis. But since the initial condition is not uniform in the y-direction, the
singularity time tc(y) will be a function of y:

ℓ = ℓ0 (t − tc(y))α .

If the singularity occurs for y = 0 first, we must have the expansion tc = t0 +
ay2 + · · · (if there were a linear term, it would mean the singularity occurred
away from y = 0 first). But this means the singularity has a characteristic size
t ′1/2 in the y-direction.

7. We will see that by combining the above mechanism for unfolding into higher
dimensions with complex temporal dynamics, one obtains a mechanism for pro-
ducing complex “turbulent” patterns.

8. A central role in the understanding of singularities is played by asymptotics, inves-
tigating the limit t ′ → 0, which controls the local behavior. This local behavior
needs to be embedded into a global environment (for example, boundary con-
ditions need to be satisfied). The condition that local and global behaviors are
consistent leads to a problem in matched asymptotics. However, often (in the
case of universal singular behavior) it is sufficient to demand that the solution at
a fixed distance δ from the singularity has a finite limit as t ′ → 0.

4.2 Similarity Solutions

The principles laid out above suggest we are looking for so-called similarity solutions
of the form

h(x, t) = t ′αH(ξ), ξ = x ′

t ′β
, (4.4)

where t ′ = t0 − t and x ′ = x − x0. This means that as the singularity is approached,
its shape remains the same, only its extension ℓ ∝ t ′β and size h ∝ t ′α are rescaled.
Let us illustrate this using a simple equation, modeling the flow of a film of liquid
on a solid substrate.

4.2.1 The Thin Film Equation

Let us consider a thin film of liquid on a substrate (Blossey, 2012; Craster & Matar,
2009; Oron et al., 1997). We assume that inertia is not important, so we want to solve
Stokes’ equation

∇p = η△v,

where η is the viscosity. The idea is to assume that the flow is locally parallel, so we
write v = u(z)ex ; inserting this into the Stokes equation we have ηu′′ = px . Note
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that we are assuming that the pressure is constant through the layer, a hallmark of
lubrication theory. The boundary conditions are those of no slip on the solid surface,
u(0) = 0, and of vanishing shear stress at the free surface z = h. In the limit of an
almost flat interface this amounts to u′(h) = 0. As a result, we can solve for the
profile to find

u(z) = px
2η

z(z − 2h), (4.5)

a quadratic profile!
It follows from mass conservation that the film thickness changes according to

ht + Qx = 0, where

Q =
h∫

0

udz = pxh3

3η

is the mass flux, so that finally we have the thin film equation

ht =
1
3η

(
pxh3

)
x . (4.6)

To close the equation, we need the pressure. The contribution from surface tension
is p = −γhxx , with γ the surface tension coefficient. This alone can never lead to
breakup, as surface tension only favors flattening of the profile. Instead, we need to
consider an attractive interaction between the free surface and the substrate, which
comes from the long-ranged interactive forces between molecules, which decay like
1/distance6. Thinking in terms of the energy (from which the pressure is retrieved by
differentiating with respect to h(x)), we have to perform a double integral over all
interactions. A local contribution from near the interface results in the surface tension
contribution given above. If however the film thickness is comparable to the range
of the interaction, there is also a contribution coming from the interaction between
liquid and substrate molecules. For a flat interface, the integral can be performed and
leads to Blossey (2012):

p = −γhxx +
A

6πh3
, (4.7)

where A is known as the Hamaker constant.
One observes immediately that now for h small the pressure becomes large, so

fluid is pushed out from thin regions, making the layer even thinner. This ultimately
leads to localized breakup. The exponent n = 3 in (4.6) is known as the mobility
exponent, the exponent m = 3 in (4.7) characterizes the range of the interaction. In
order to create a playing field in which to explore many different kinds of dynamics,
we will from now on treat both exponents as free parameters. There are physical
systems for which different parameter values can indeed be argued, but here we only
treat this as a mathematical laboratory. In other words, we have (after scaling, so that
prefactors are normalized to unity):
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ht −
(
hn px

)
x = 0, p = −hxx +

h−m

m
; (4.8)

in the classical case, n = m = 3. Combining the two equations, we arrive at the
compact form

ht +
(
hnhxxx + hn−m−1hx

)
x = 0. (4.9)

So far, we have assumed that the film thickness only varies in a single direction
x . For a film on a two-dimensional substrate with coordinates x and y, it is natural
to generalize (4.9) to an equation for h(z, y, t) (Bertozzi & Pugh, 1994)

ht = −∇ ·
(
hn∇△h + hn−m−1∇h

)
, (4.10)

which is isotropic in x, y.

4.2.2 Linear and Non-linear Solutions

To gain some insight into the driving forces, we consider the linear stability of a flat
film of thickness href, adding small perturbations of size ϵ. For simplicity, we only
allow for perturbations in the x-direction and linearize:

h(x, t) = href + ϵeωt+ikx , (4.11)

where ω is the growth rate of the perturbation. Inserting (4.11) into (4.9), we obtain
the dispersion relation

ω = hn−m−1
ref k2

(
1 − hm+1

ref k2
)
. (4.12)

One observes that wavenumbers k < h−(m+1)/2
ref are unstable, while shorter wave-

lengths lead to complex ω and are stable. The reason is that more surface area is pro-
duced for shorter wavelengths, so these perturbations are not energetically favorable.
This type of instability was investigated by Rayleigh in the context of the breakup
of a fluid jet. The highest growth rate is achieved for k = h−(m+1)/2

ref /
√
2, which is

known as the Rayleigh mode. Its significance lies in the fact that this wavelength will
be observed for a random initial perturbation.

As perturbations grow for the unstable modes, nonlinear effects eventually take
over. The idea is that for a locally driven pinch-off singularity, h → 0 and ℓ → 0,
so that as t → t0, h ∝ t ′α, and ℓ ∝ t ′β . This leads to the similarity solution (4.4), for
which the exponents α,β, as well as the profile H(ξ) still need to be found. First, the
exponents are found by balancing the terms in (4.9). For every factor of h, there is a
factor of t ′α, a factor of t ′−β for every space derivative, and t ′−1 for a time derivative.
This leads to the balance of powers of t ′:

α − 1 = (n + 1)α − 4β = (n − m)α − 2β,
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Fig. 4.7 Two examples of similarity solutions (solutions of (4.14)) for different values of n,m.
a a regular, symmetric similarity solution for n = 3,m = 2. b a regular, asymmetric solution for
n = 1.5,m = 0.2

and thus
α = 1

2+ 2m − n
, β = 1+ m

4+ 4m − 2n
, (4.13)

in terms of the parameters n and m. This situation is known as self-similarity of the
first kind.

Using these values, we can plug (4.4) into (4.9) to obtain the similarity equation:

− αH + βξHξ = −
[
HnHξξξ + Hn−m−1Hξ

]
ξ
. (4.14)

In order to solve (4.14), one needs boundary conditions, which come from thematch-
ing requirement that since ℓ → 0 as t ′ → 0, we expect h(x, t) → h(x, 0) as t ′ goes
to zero. In terms of (4.4), this means that for fixed x ′ (and thus ξ → ±∞),

h(x, t) = t ′αH
(
x ′

t ′β

)

approaches the finite value h(x, 0). But this implies the boundary conditions

H(ξ) → Aξα/β, ξ → ±∞. (4.15)

The constant A is in general not known, but is often a universal number which
follows as part of the solution. This solution depends very much on the values of the
parameters n,m. Two examples are shown in Fig. 4.7, where on the left we show a
symmetric solution, on the right an asymmetric solution, so that left-right symmetry
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is broken. Which of the two cases is observed (the one shown in Fig. 4.7 or a flipped
one), is determined by the initial conditions.

But in fact this is an oversimplified picture! Typically, there is not just one solution
(as shown in the figure), but a discretely infinite sequence, only the first member of
which (which we call the ground state) is shown in Fig. 4.7.

To find out what distinguishes the different solutions, we need to discuss their
stability (more about this later on). It turns out there are essentially two cases:

1. There is one stable “ground state” solution H0(ξ) and a sequence Hi (ξ), i ≥ 1,
of unstable solutions.

2. all Hi are unstable, and other, slowly varying solutions are observed instead.

4.2.3 The Eikonal Equation

We begin with the underlying wave physics, described by the wave equation

"φ − c−2φt t = 0, (4.16)

where c is the wave speed. For simplicity, we confine ourselves to a scalar field φ
(we disregard polarization etc.). A monochromatic wave of angular frequency ω is
described by

φ = #e−ikct , (4.17)

where k = ω/c is the wave number. Inserting (4.17) into (4.16), we obtain the
Helmholtz equation

"# + k2# = 0. (4.18)

The solution will have very rapid spatial oscillations, while we are interested in
phase changes on the large scale. To bring them out, we look at

# = #0(x) exp {ikψ(x)} , (4.19)

and study the limit of large k. Here ψ(x) is the phase of the wave, and #0(x) its
amplitude. To leading order we obtain

k2#0
(
1 − (∇ψ)2

)
+ O(k) = 0

so that we obtain a nonlinear equation for the phase:

|∇ψ|2 = 1, (4.20)

which is known as the eikonal equation. It describes the three-dimensional shape of
surfaces of constant phase.
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To turn this into a time-dependent problem, in analogy to the thin film equation
studied earlier, we consider the propagation in time of a wave front, for example
after a light source was switched on. Such a propagation is described by ψ(x) = ct ,
where ψ(x) is found from (4.20). We can turn this into a PDE for the propagation
of a graph z(x∥, t), where z is the direction of propagation and x∥ are the transversal
coordinates. As a result, ψ(x∥, z(x∥, t)) = ct . We differentiate that with respect to t
and with respect to x∥, which results in

c = ψz ż, ∇∥ψ + ψz∇∥z = 0.

Squaring the first equation and using (4.20) we have

c2 = ψ2
z ż

2 = ż2
(
1 − ∇∥ψ

2) = ż2
(
1 − ψ2

z∇∥z2
)
= ż2

(
1 − c2∇∥z2/ż2

)
,

so that
ż2 = 1 − ∇∥z2, (4.21)

where we normalized the speed of light to unity. This is the dynamical form of the
eikonal equation.

4.2.4 Wavefronts and the Caustic Condition

Apart from (4.21), there are at least two other equivalent ways of expressing the
same physical information. This can also be viewed as ways to solve the differential
equation (4.21). The first, known as Huygens’ principle, is equivalent to saying that
from each point of a wavefront emanates a raywhichmoves at constant speed (c = 1)
in the normal direction. To construct the wavefront at future times t , one simply has
to connect the points to which each individual ray has progressed. To be explicit,
write a surface in D dimensions as x(u, t), where u is a d − 1-dimensional vector
parameterizing the surface, and thus parameterizing rays. Thus the Huygens solution
is (c = 1)

x(u, t) = x(u, 0)+ n(u, 0)t, (4.22)

where n(u, 0) is the normal to the initial wave front. From this a new wave front at
time t can be constructed, as illustrated in Fig. 4.8.

To obtain an explicit solution h(x, t) to (4.20) in parameterized form, let h(u, 0) =
h0(u)be the graph representation of the initialwave front, so thatx(u, 0) = (u, h(u)).
Then, computing the normal vector as n(u, 0) = (−∇ f, 1)/

√
1+ ∇ f 2, we find the

solution
h = h0(u)+

t
√
1+ ∇h20

, x∥ = u − ∇h0√
1+ ∇h20

t. (4.23)
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Fig. 4.8 A wavefront can be
described either as the graph
of a function z = h(x, t), or
as lines of constant value of
the action S(x, z). Rays are
perpendicular to the
wavefronts, and
ℓ(x0, z0; x, z) measures the
optical path length between
two points

It can be checked by substitution that (4.23) is indeed the desired solution of (4.20)
with initial condition h(x∥, 0) = h(x∥). The key observation is that for a smooth
initial condition x(u, 0), each component of (4.22) is a smooth function for all t .
Singularities in the shape of the wave front can only arise if the mapping u -→ x no
longer has full rank, which is precisely the situation described by catastrophe theory
(Nye, 1999).

In catastrophe theory, Fermat’s principle is often used to describe singularities of
wave fronts. The advantage is that one only has to deal with a single scalar function
ℓ, the light distance between two points, see Fig.4.8. Namely, the distance between
a point on the initial wave front x(u, 0) = (u, h0(u)) and a point (x∥, z) is

ℓ =
[
(x∥ − u)2 + (z − h0(u))2

]1/2
. (4.24)

Now the wave front x(t) = (x∥(t), z(t)) is determined by the extremal condition
(Fermat’s principle)

∇uℓ = 0 (4.25)

and
ℓ = ct. (4.26)

Indeed, it can be checked directly that (4.25) and (4.26) are equivalent to (4.23)
(c = 1), and thus to (4.20).

Now let us characterize singular points (caustics) in terms of Fermat’s principle.
We write the initial wave front as a graph z(x, y, 0) ≡ h0(x, y) over the x, y-plane;
u = (ϕ,ψ) parameterizes the initial wave front. Then the wave front at a time t can
be written as

x(ϕ,ψ, t) = (x(ϕ,ψ, t), y(ϕ,ψ, t), z(ϕ,ψ, t)) ,
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where

ℓ(x, y, z,ϕ,ψ) =
[
(ϕ − x)2 + (ψ − y)2 + (z − h0(ϕ,ψ))2

]1/2
(4.27)

is the optical distance. On a wavefront, the conditions

ℓϕ = ℓψ = 0, ℓ = t (4.28)

are satisfied. Differentiating the first two equations with respect toϕ andψ, we obtain

(
ℓϕϕ ℓϕψ

ℓϕψ ℓψψ

)
= −

(
xϕ yϕ zϕ

xψ yψ zψ

) ⎛

⎝
ℓϕx ℓψx

ℓϕy ℓψy

ℓϕz ℓψz

⎞

⎠ . (4.29)

A caustic occurs where ℓ has a saddle point, which is where rays concentrate.
This means that at the points of the caustic, the Hessian determinant of ℓ vanishes.
This certainly happens if the Jacobi matrix of the surface x(ϕ,ψ) no longer has full
rank, i.e. at singularities of the wave front. In other words, condition for a caustic is
that

H = ℓϕϕℓψψ − ℓ2ϕψ = 0. (4.30)

The mapping x(ϕ,ψ) no longer having full rank is equivalent to the minors
D1, D2, D3 of the Jacobi matrix vanishing. Differentiating ℓ(x(ϕ,ψ),ϕ,ψ) = t ,
with respect to ϕ and ψ, and using ℓϕ = 0 and ℓψ = 0, respectively, it follows that
the columns of the matrix are linearly dependent. Thus

D1 = xϕyψ − xψ yϕ = 0 (4.31)

is equivalent to all three minors vanishing, which is equivalent to (4.30).

4.2.5 The Cusp

We now come back to a similarity description of the singularities of wavefronts. We
insert the ansatz

z = t + |t |αh(ξ), ξ = x
|t |β (4.32)

into (4.21), where we take the singularity to occur at t = 0. The first term proportional
to t arises because the wave propagates at constant speed c (normalized to one) in
the z-direction. Inserting into (4.21), we obtain to leading order:

∓ 2|t |α−1 (
−αh + βξhξ

)
+ |t |2α−2βh2ξ = 0, (4.33)
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which means that β = (α + 1)/2, while α is open. It will be obtained from a regu-
larity condition on the solution; this situation is called self-similarity of the second
kind.

The similarity equation becomes

2αh − (α + 1)ξhξ ± h2ξ = 0. (4.34)

Here and in the following, the upper sign refers to the time before the singularity:
t < 0, which means that |t | = −t ; the lower sign refers to t > 0. Putting U = −hξ ,
we obtain the semilinear equation

(α − 1)U − (α + 1)ξUξ ∓UUξ = 0, (4.35)

which is the same equation which describes a shock in the Burgers equation. A
solution can be found using ξU = (Uξ)

−1; alternatively, it is easy to check that the
solution is

ξ = ∓U − CU
α+1
α−1 . (4.36)

The exponent must be an odd integer, otherwise the similarity profile before
singularity formation would have a singularity at the origin (therefore it must be an
integer), and it would not be one-to-one (therefore odd). In addition, the constant C
must be positive. The value “1” is also not allowed, otherwise the solution would be a
straight line,which does notmatch afinite outer solution. Thuswehave (α + 1)/(α −
1) = 2i + 3, with i = 0, 1, 2, . . . . Of these solutions, only i = 0 corresponds to a
stable “ground state” solution (we will investigate stability in the section below), so
finally we have

ξ = ∓U − CU 3, (4.37)

as shown in Fig. 4.9. The exponents are α = 2 and β = 3/2.
Caustics (bright spots) are places where rays concentrate. These are points where

the optical distance, as function of variables parameterizing the original wavefront,
has a saddle point. SinceU can be chosen as such a parameter, in one dimension this
is the condition ξU = 0, see condition (4.31) below.

It is seen on the right of Fig. 4.9 that two such points appear. It follows that

ξU = 1 − 3CU 2 = 0,

and a caustic occurs forUcr = ±1/
√
3C or ξ = ±ξcr = Ucr − CU 3

cr . But this means
a caustic is traced out by x = ±ξcr t3/2 for t > 0, while traveling along the z-axis.
Since z = ct , in space this traces out a cusp

x = ±ξcr z3/2, (4.38)

as seen in a coffee cup, Fig. 4.10.
Returning to the shape of the wave front h(ξ), we have
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Fig. 4.9 Similarity solutions before and after the shock, according to (4.37). On the left, the solution
before the singularity (upper sign); on the right, the solution after the singularity (lower sign). The
two places where the profile is vertical on the right correspond to the caustic

Fig. 4.10 Bright caustic
lines form a cusp in a coffee
cup (photo courtesy of Ann
Eggers)
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Fig. 4.11 The swallowtail similarity function (4.39) before the singularity (left) and after (middle).
On the right, the swallowtail front is propagated as in (4.40)

hU = ξUhξ = −ξUU = ±U + 3CU 3.

We can integrate this as

h =
U∫ (

∓U + CU 3) dU = ∓U 2

2
+ C

4
U 4 + const.

Thus a parametric form of the wave front is given by

ξ = ∓U − CU 3, h = ∓U 2

2
+ C

4
U 4 + const, (4.39)

which is also known as a swallowtail curve (Eggers & Suramlishvili, 2017). After
the singularity, the wave front becomes singular, and forms cusp points. It is known
generally (Nye, 1999) that these cusp points of the wave front trace out the caustic.

According to (4.32), in real space we have

z = t + |t |2 h
(

x
|t |3/2

)
; (4.40)

this is singular for xcr = ξcr t3/2, z = t , which traces out the cusp, see the right of
Fig. 4.11.

4.3 Stability Analysis

4.3.1 General

Self-similar solutions are not always observed even if the similarity equation has
solutions: those solutions may be unstable. To investigate, we look at the neighbor-
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hood and probe the linear stability. This may seem difficult, since the solution whose
stability we investigate is itself time-dependent. The trick is to allow H(ξ) to vary
on a logarithmic scale (Giga & Kohn, 1985):

h(x, t) = t ′αH (ξ, τ ) , ξ = x ′/t ′β, τ = − ln t ′. (4.41)

Now given any equation of motion ht = F{h}, where F{h} contains derivatives
hx etc.), this has a similarity equation of the form

0 = αH − βξHξ + F{H}.

Considering the additional dependence on τ (
∂τ

∂t
= 1/t ′ for t ′ > 0, before the sin-

gularity) this becomes
Hτ = αH − βξHξ + F{H}, (4.42)

with the similarity solution being a fixed point of the “dynamical system” (4.42).
Linearizing around the fixed point, this makes it easy to investigate the stability of the
similarity solution, i.e. whether a certain self-similar behavior is actually observed.
Later wewill use the same equation to investigatemore complex behavior, not strictly
self-similar.

4.3.2 The Eikonal Equation

To illustrate the procedure, let us consider the stability of self-similar solutions to
the eikonal equation, given by (see (4.32))

z = t + |t |αh(ξ, τ ), ξ = x
|t |β .

Since
∂τ

∂t
= ±1/|t | before/after the singularity the dynamical system becomes

hτ = αh − α + 1
2

ξhξ ±
h2ξ
2

= 0. (4.43)

This is simplified if differentiated with respect to ξ, and puttingU = −hξ we obtain

Uτ = α − 2
2

U − α + 2
2

ξUξ ∓UUξ, (4.44)

or with α = (i + 2)/(i + 1) (and so (α + 1)/(α − 1) = 2i + 3 as above)
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Uτ = U
2i + 2

− 2i + 3
2i + 2

ξUξ ∓UUξ, i = 0, 1, 2, . . .

Now if Ūi (ξ) is a solution to the similarity equation (4.35) (the base solution),
then a perturbation has the form

U (ξ, τ ) = Ūi (ξ)+ δeντ P(ξ), (4.45)

and we linearize in δ. Here ν is the eigenvalue and P(ξ) the eigenfunction. This
yields an eigenvalue equation for the perturbations P around the base profile Ūi

(specializing to t ′ > 0):

(
1

2i + 2
− ν

)
P − 2i + 3

2i + 2
ξPξ − P(Ūi )ξ − PξŪi = 0, i = 0, 1, . . . (4.46)

Replacing ξ by Ūi as the independent variable, we find

P
[(

1
2i + 2

− ν

)
(1+ (2i + 3)Ū 2i+2

i )+ 1
]
= ∂P

∂Ū

[
Ūi

2i + 2
+ 2i + 3

2i + 2
Ū 2i+3

i

]
.

(4.47)
This is solved by separation of variables:

P = Ū 3+2i−2ν(i+1)
i

1+ (2i + 3)Ū 2i+2
i

. (4.48)

The exponent 3+ 2i − 2ν(i + 1) must be an odd integer for (4.48) to be regular at
the origin, so the eigenvalues are

ν j =
2i + 3 − j
2i + 2

, j = 0, 1, 3, 5, . . . (4.49)

Thus for the first similarity solution in the series (i = 0), the eigenvalues are ν =
3/2, 1, 0,−1, . . . . Thus surprisingly, there are two unstable eigenvalues and one
neutral one: the solution seems to be unstable! However, this is not the case; instead,
the positive eigenvalues are a result of the fact that the origin x0 and time t0 can be
chosen arbitrarily. Namely, if a perturbation drives the solution to a new pinch point,
it will effectively be driven away from the unperturbed solution, which touches down
at x = x0.
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4.3.3 Unstable Modes

More formally, putting ᾱ = (α − 1)/2, if

u(x ′, t ′) = t ′ᾱŪ
(
x ′

t ′β

)

is a similarity solution, then

u(")(x ′, t ′) = t ′ᾱŪ
(
x ′ + "

t ′β

)
≡ t ′ᾱŪ (")(ξ, τ )x (4.50)

is an equally good solution for any spatial shift ". Expanding in " we obtain

U (")(ξ, τ ) = Ū (ξ)+ "t ′−βŪξ + O("2) ≡ Ū + "eβτ Ūξ + O("2). (4.51)

But comparing to (4.45), the term linear in"must a solution of (4.46)with eigenvalue
ν = β (which for i = 0 is β = α + 1 = 3/2) and eigenfunction P(ξ) = Ūξ . In other
words, the unstablemode Ūξ comes from the fact that a perturbation (of say, amplitude
ϵ) to a similarity solution also leads to a shift x0(ϵ). If x0 is not adjusted accordingly,
no blow-up will occur at x0, which can only mean that one is driven away from the
singular solution, which blows up at x0(ϵ).

A very similar argument pertains to a shift in t0, the time of the singularity. Thus

u("t)(x ′, t ′) =
(
t ′ + "

)ᾱ Ū
(

x ′

(t ′ + ")β

)
≡ t ′ᾱŪ ("t)(ξ, τ ).

Linearizing for small " we obtain

Ū ("t)(ξ, τ ) = "eτ
(
ᾱŪ − βξŪξ

)
,

so the time translational eigenvalue is ν = 1, with eigenfunction ᾱŪ − βξŪξ . This
accounts for the next positive exponent in the sequence, but there is also a vanishing
eigenvalue (neutral). This comes from the fact that ξ = −Ū − CŪ 3 is a continuous
family of similarity solutions, which defines

u(C) = t ′ᾱŪ (C).

An expansion in C yields

U (C)(ξ, τ ) = Ū (C̄)(ξ)+ (C − C̄)
∂Ū
∂C

,

(C − C̄) ≡ δC = δCe0τ , and so ν = 0 with eigenfunction P(ξ) = ∂Ū
∂C

, which is
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∂Ū
∂C

= −∂Ū
∂ξ

∂ξ

∂C
= −(ξŪ )

−1(−Ū 3) = Ū 3

1+ 3CŪ 2
.

Thus the eigenfunction to the eigenvalue ν = 0 is in parametric form

P(−U − CU 3) = U 3

1+ 3CU 2
. (4.52)

In summary, from the sequence of eigenvalues for i = 0, all eigenvalues relevant
for the stability of the solution are negative: the solution is stable! The next similarity
solution has i = 1, and so the sequence of eigenvalues is ν = (5 − j)/4, where
j = 0, 1, 3, 5 . . . , so that ν = 5/4, 1, 1/2, 0,−1, . . . . The first two eigenvalues are
accounted for by the spatial and temporal invariance, respectively. However, apart
from the neutral eigenvalue, a positive eigenvalue ν = 1/2 remains. Thus the next
higher solution is unstable! This is a situation encountered quite frequently (pinch-
off of a fluid thread etc.): only the base solution is stable, all “higher order” solutions
are linearly unstable.

4.3.4 The Thin Film Equation

We will return to optics when we study caustics in higher dimensions. But next we
will apply the dynamical systems formulation to look at the stability of similarity
solutions to the thin film equations! Comparing to (4.14) we obtain the dynamical
system for the thin film equation:

Hτ = αH − βξHξ −
[
HnHξξξ + Hn−m−1Hξ

]
ξ
, (4.53)

where h(x, t) = t ′αH(ξ, τ ). Once more we require that h(x, t) be time-independent
at constant x ′ as t ′ → 0. Since

dh
dt ′

= t ′α−1 [
αH − βξHξ − Hτ

]
,

this leads to the condition (Eggers & Fontelos, 2015; Witelski & Bernoff, 2000)

Hτ ∼ αH − βξHξ, as |ξ| → ∞. (4.54)

The dynamical system (4.53) is equivalent to the original equation (4.9), but any
similarity solution is a fixed point.

We can now investigate the stability of the sequence of solutions Hi (ξ), that
typically exists for any n,m. To this end we put:

H (ξ, τ ) = Hi (ξ)+ δeντ P(ξ), (4.55)



150 J. Eggers

Fig. 4.12 Simulations of (4.8) with n = 3,m = 2 (left, regular case), and n = 3,m = 1.3 (right,
irregular case), plotting log10 h(x, t) as the singularity is approached. Only the neighborhood of
the singularity is shown, and a new profile is recorded each time the minimum thickness hmin has
decreased by a factor of 0.8

and linearize in δ. This gives the eigenvalue problem

νP = αP − βξPξ −
[
Hn
i Pξξξ + nHn−1

i Hi,ξξξP+
Hn−m−1Pξ + (n − m − 1)Hn−m−2

i Hi,ξP
]
ξ
, ν = νR + νI , (4.56)

with the far-field condition νP ≈ αP − βξPξ for |ξ| → ∞. Since the eigenvalue
problem (4.56) is real, the eigenvalues appear in conjugate pairs.

We solve the eigenvalue problem (see Dallaston et al., 2021a), by either

1. solving a system of ODE’s for both the base profile and P , or
2. discretising the eigenvalue equation in ξ (Hi (ξ) given) and solving the resulting

algebraic eigenvalue problem to find the eigenvalues.

One technical problem that is always encountered is the existence of unstable direc-
tions associated with the invariance in space and time. They need to be identified and
the corresponding eigenmodes discarded.

For each point in the (n,m)-plane one finds a semi-infinite sequence of base
solutions Hi (ξ), whose stability can be investigated numerically. For example, for
n = 3,m = 2, forwhich the similarity profilewas shown earlier on the left of Fig.4.7,
H0(ξ) is stable, all other solutions in the sequence are unstable. This is illustrated
by a dynamical simulation of the thin film equation for the corresponding parameter
values, as seen on the left of Fig.4.12. Pinch-off proceeds in a sequence of profiles,
whose shape remains the same. Rescaling the x-axis with t ′β and the h-axis with t ′α

results in a collapse on the similarity profile. None of the other similarity solutions
are observed.

As we have seen in Fig. 4.7, there are stable fixed points corresponding to both
symmetric and asymmetric profiles, e.g. n = 1.5,m = 0.2 for an asymmetric profile.
An important feature of these fixed points is that the most “dangerous” eigenvalues
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(νR < 0 closest to zero) are complex (νI ̸= 0). This means that the approach to
the self-similar solution is oscillatory. For example in viscously dominated pinch-
off all eigenvalues are real, as can be shown analytically (Eggers, 2012). However,
as inertia becomes important (inertial-viscous-surface tension balance) eigenvalues
become complex. This has been flagged as the reason for non-uniform or oscillatory
approach to the similarity solutions (Dallaston et al., 2021b).

4.3.5 Instability

An exciting discovery came when Dallaston et al. (2017) lowered m below 2 at
constant n = 3, effectively making the interaction more long-ranged (since h−m

decays more slowly away from the minimum). This is illustrated on the right of
Fig. 4.12 for m = 1.3, for which the profile near a local minimum develops a spatial
“instability”. While in the purely self-similar case the solution proceeds with the
same shape on smaller and smaller scales, now the solution develops side branches,
along which the solution again proceed in a seemingly self-similar fashion, until the
side branch becomes once more unstable, and the process repeats itself.

The origin of these instabilities is revealed in Fig. 4.13, where the first two solu-
tion branches (the stable ground state solution H0, and the first unstable solution
H1) are traced back from m = 3 toward smaller values. Each similarity solution is
parameterized by its minimum value Hmin. Two things are observed:

1. as m decreases, the first two solution branches merge at a fold bifurcation.
2. H0 (previously stable) becomes unstable at two different Hopf bifurcations.

Fig. 4.13 Left: Solution branches for n = 3, represented by the minimum value Hmin of the sim-
ilarity profile, as a function of m. Branches H0 and H1 are joined at a fold bifurcation. Periodic
branches are born at the symmetric and antisymmetric Hopf bifurcations, an unstable asymmetric
branch originates from a pitchfork bifurcation. Right: The real part of eigenvalues governing the
stability of the primary branch. The imaginary eigenvalues at the Hopf bifurcation are ν = ±0.912i
and ν = ±0.885i , respectively
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Fig. 4.14 Periodic solutions of (4.53), for n = 3 and m = 1.5. On the left, Hmin as a function of
time, on the right, the (asymmetric) profile at the times indicated by the dots. The last profile is
identical to the first, as we have completed an entire period

Thus as H0 is a stable branch and H1 unstable, the two branches meet at a fold
bifurcation. More importantly, as m is lowered along the H0-branch, one encounters
a Hopf bifurcation (see the right of Fig. 4.13), first at ms = 1.567 against symmetric
modes of instability, and then ma = 1.545 against asymmetric modes.

A Hopf bifurcation implies that the real part of the eigenvalue goes through zero
at a finite imaginary value. At the symmetric and asymmetric Hopf bifurcations, ν =
±0.912i and ν = ±0.885i , respectively. This means that the original self-similar
solution gives way to something time-dependent. At the transition we have

H(ξ, τ ) = H0(ξ)+ δeiνI τ P(ξ), (4.57)

with period T = 2π/νI . Thus at a Hopf bifurcation, a new time-dependent solution
is born, varying sinusoidally, at a finite frequency. At each of the bifurcations, a new
solution branch originates, corresponding to a periodic orbit (of period T close to
the value at bifurcation), no longer exactly “circular”. This introduces a new type of
solution, no longer self-similar, known as “discrete self-similarity”.

The reason is that the solution varies continuously along a closed curve in function
space, with a period T . Only at discrete times τn = nT + τ0, or t0 − tn = e−nT eτ0 ,
does the solution return to its same rescaled shape H(ξ, τn), hence the name. As is
seen in the bifurcation diagram, for m < ma the profile is asymmetric in space (see
the red dot-dashed curve). To trace the time dependence at a value ofm slightly below
the asymmetric Hopf bifurcation, on the left of Fig. 4.14 we trace the minimum of
the similarity profile as a function of τ , which is seen to be periodic. Each point along
the curve of course corresponds to an entire profile, whose shapes repeat themselves,
as seen on the right for a representative sequence of times, shown as dots on the left.
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Fig. 4.15 Phase diagram of one-dimensional singular solutions of (4.9). Below the symmetricHopf
bifurcation (solid blue line), regular rupture solutions become unstable, and periodic, or even more
complex dynamics appears. A second antisymmetric bifurcation occurs just below (red dashed line).
For small values of n below≈1.87, regular, asymmetric solutions are seen below a Hopf bifurcation
in the reverse direction (orange dot-dashed line)

Notice that although H0 first becomes unstable to a symmetric Hopf bifurcation, the
time-dependent solution observed for small m is actually the asymmetric branch, as
seen in Fig. 4.14.

Above we have described the transition toward periodic motion for n = 3; this
transition can now be tracked systematically as a function of n, as shown in Fig. 4.15.
The full phase diagram is more complicated, but to a good approximation regular
motion is observed for

m > 0.8(n − 1) : regular dynamics. (4.58)

Finally, it is observe that for even smaller m, the solution no longer appears to be
periodic, but orbits are more complicated. The complexity of spatial patterns suggest
chaotic behavior, always generating new profiles.

4.3.6 Drop Pinching

Irregular behavior has been observed in many systems. A particularly interesting
example is viscous breakup of one fluid in another, in the limit that the inner fluid vis-
cosity is much smaller: λ = ηin/ηout , λ ≪ 1. As seen in Fig. 4.16, several sequences
of instability, closely resembling discrete self-similarity, are observed in an exper-
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Fig. 4.16 The breakup of a fluid filament, whose viscosity is smaller by a factor 0.067 relative to
the surrounding fluid (Tjahjadi et al., 1992). On the left, the overall dynamics are compared between
theory and experiment; on the right, a blowup of the last stages of the experiment is seen. The same
sequence of events repeats itself several times, and three stages of the same event are numbered 1–3

iment (far left), and are reproduced in the corresponding panel immediately to the
right, showing a numerical simulation. Each detail of the experiment is indeed repro-
duced by a simulation of Stokes’ equation. The blow-up of the experimental sequence
on the far right shows three stages of the same sequence.

Starting from Stokes’ equation, using the approximation of a slender filament,
the problem has been re-examined theoretically by Fontelos andWang (2021). After
some rescaling (which eliminates λ), the slender equations can be written in the form

∂h
∂t

= ph − 1, p = 1
h
+ 1

h2
(
h4 p′)′

.

They are simple enough so they can be studied in detail; an analysis of the dynam-
ical system in self-similar variables indeed shows periodic behavior (discrete self-
similarity). There are indications that the time dependence might even be more of a
more complicated, non-periodic form.
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4.4 Multidimensional Singularities

So far we have only looked for solutions in one dimension, but in general singularities
develop in arbitrary dimensions. A general ansatz is

h(x, y, t) = t ′αH(ξ, η), ξ = x ′

t ′β
, η = y′

t ′β̄
, (4.59)

where x ′ and y′ are the distances to the location of the singularity, at x0, y0. We
assume that the equation of motion itself does not favor a particular spatial direction.
We will see that two cases arise:

1. β = β̄: “pointlike” singularity, for example when the singularity is radially sym-
metric

2. β̄ = 1/2: “quasi-one-dimensional”, consistent if the variation in the transversal
direction is slow, namely β > β̄ = 1/2.

Apart from systems examined in more detail below, examples of these two types
of multi-dimensional singularities have recently been observed in drop coalescence.
Pointlike singularities have been seen in liquid lenses (drops floating on another
liquid) (Klopp et al., 2020) and quasi-one-dimensional singularities in sessile drops
on a solid substrate (Kaneelil et al., 2022).

In the following, we assume that the coordinate system has been adjusted so that
the direction in which gradients are greatest is the x-direction. Since the variation
in the y-direction is slow, we can look at the solution as a superposition of one-
dimensional solutions, as a parameter is varied. Since νT = 1 is usually the most
singular eigenvalue, this is effectively the singularity time tc(y). Let us choose the
origin of y such that a singularity occurs for y = 0 first.

Expanding, we have tc(y) = t0 + Ay2 + O(y3), where Amust be a positive num-
ber, otherwise t0 would not be the time of the earliest singularity; for the same reason
there is no linear term. Thus effectively for each y we have for the one-dimensional
singularity tc − t = t ′ + Ay2, which implies y2 ∼ t ′, and so β̄ = 1/2. Thus we have

h(x, y, t) = t ′αH
(
x ′

t ′β
,

y′

t ′1/2

)
≡ t ′αH (ξ, η) , (4.60)

which is consistent if β > 1/2. In that case hx = t ′α−βHξ ≫ hy = t ′α−1/2Hη, so that
the right hand side of (4.10) becomes to leading order

−t ′α−1 [
HnHξξξ + Hn−m−1Hξ

]
ξ
,

and the two-dimensional similarity equation of the thin film problem becomes

− αH + βξHξ +
η

2
Hη = −

[
HnHξξξ + Hn−m−1Hξ

]
ξ
. (4.61)
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This applies for β = 1+ m
4+ 4m − 2n

> 1/2, or

n > 1+ m, quasi-one-dimensional. (4.62)

Now we can, starting from any one-dimensional description H (1)(ξ), find the
unfolded solution in general dimensions. We find that

H(ξ, η) =
(
1+ Aη2)α

H (1)

(
ξ + Bη2β

(
1+ Aη2

)β

)

(4.63)

is a solution of (4.61) for arbitrary constants A, B, as can be checked by direct
substitution. Here we have allowed for a detuning in space as well, to arrive at a more
general form of solution. The constants are adjustable parameters, which depend on
initial conditions. Note that η2β is in general a singular contribution unless 2β is an
integer, for example when β = 1. In that case

"x = x − xc = x ′ − by2,
"x
t ′β

= ξ − b
y2

t ′
= ξ − bη2,

as required.
The same idea can be applied to the solution of the dynamical system

Hτ = αH − βξHξ − η

2
Hη −

[

Hn
(
Hξξ − 1

mHm

)

ξ

]

ξ

; (4.64)

now if H (1)(ξ, τ ) is a solution of (4.53),

H(ξ, η) =
(
1+ Aη2)α

H (1)

(
ξ + Bη2β

(
1+ Aη2

)β
,

τ

1+ Aη2

)

(4.65)

solves (4.64).
Analogous expressions work in arbitrary dimensions, and for all isotropic prob-

lems. On the other hand, for n ≤ 1+ m (so that β ≤ 1/2), a pointlike singularity is
observed. Inserting (4.59) with β = β into the generalized thin film equation (4.10),
we obtain the similarity solution

− αH + βξHξ + βηHη = −∇ ·
(
Hn∇△H + Hn−m−1∇H

)
, (4.66)

where ∇ = (∂ξ, ∂η), and △ = ∂2
ξ + ∂2

η . In view of spatial isotropy, it is natural to
look for solutions of (4.66) which are axisymmetric (Witelski & Bernoff, 2000;
Zhang & Lister, 1999). The scaling of the exponents (4.13) is the same as in the
one-dimensional case. This leads to the radially symmetric solution
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Fig. 4.17 Simulation of (4.10) with n = 2,m = 1.5, (α ≈ 0.33,β ≈ 0.42), and initial condition
(4.69), using ϵ1 = 0.05, ϵ2 = 0.03, and href = 0.2. On the left, a perspective plot of 1/h at τ = 10.1
demonstrates the pointlike character. On the right, cuts in the x and y directions are shown at the
top and bottom, respectively, for the values of τ = − ln t ′ shown. Profiles are collapsed according
to (4.67), and agree with a solution of (4.68) (dot-dashed line), demonstrating axisymmetry

h(x, y, t) = t ′αH(ρ), ρ = r/t ′β, (4.67)

for which the similarity equation becomes in two dimensions:

− αH + βρHρ +
1
ρ

⎡

⎣ρHn

((
ρHρ

)
ρ

ρ

)

ρ

+ Hn−m−1Hρ

⎤

⎦

ρ

= 0. (4.68)

Let us explore the validity of the two types of solution: quasi-one-dimensional or
pointlike. As the initial condition we choose

h0(x, y) = href [1 − ϵ1 cos 2π(x − 1/2)] [1 − ϵ2 cos 2π(y − 1/2)] , (4.69)

which helps explore transitions between one and two dimensions. If ϵ2 = 0, there
is no y-dependence, and solutions are strictly one-dimensional. If on the other hand
ϵ1 = ϵ2, there is a single minimum at the center (x, y) = (1/2, 1/2) of the domain,
around which the profile is approximately axisymmetric. The mean thickness href
was chosen such that a flat profile is linearly unstable.

The case of Fig. 4.17 is in the pointlike (axisymmetric) regime. According to
(4.13), β ≈ 0.42 < 1/2, so a transverse perturbation, resulting in an effective shift
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Fig. 4.18 Simulation of (4.10) with n = 1.7,m = 0.2 (α ≈ 1.42,β ≈ 0.86), and initial condition
(4.69), using ϵ1 = 0.05, ϵ2 = 0.03, and href = 0.04. A quasi one-dimensional, regular singularity is
observed. On the left, a perspective plot of 1/h at τ = 7.5with two quasi one-dimensional peaks; on
the bottom right, a collapse of the profiles using (4.59), compared to (4.63). Upper right, transversal
collapse using (4.70)

in t0, only produces a localized perturbation inside the peak, which remains stable.
As seen on the left of Fig. 4.17, although the initial condition is not axisymmetric, the
solution converges to a point, with radial symmetry. We show a perspective plot of of
1/h, and emphasize contour lines using a color scale. To demonstrate axisymmetry
more clearly, we show collapse of the profiles in the x and y directions on the right.
Cuts in both directions are rescaled according to (4.67). In both cases one observes
very good collapse, and very good agreement with the solution to the axisymmetric
similarity equation (4.68). We find the same pointlike behavior for all of the cases
above the blue dashed line.

Next we look at a quasi one-dimensional case, shown in Fig. 4.18. Choosing
n = 1.7,m = 0.2,we look at a case of regular fixedpoint dynamics, foundunderneath
the dot-dashed orange curve of Fig. 4.15; the one-dimensional profiles are highly
asymmetric, as shown in the lower right. On the left of Fig. 4.18, we once more plot
1/h over the (x, y)-plane, and indicate contours by color; owing to the symmetry
of the initial condition, we now see two equal peaks. The exponent controlling the
width of the singularity is β ≈ 0.87 > 1/2, so a transversal perturbation now leads
to a growth of one-dimensional singularities over a scale t ′1/2, which is much larger
than their width. Indeed, the peaks are seen to be extremely anisotropic: much thinner
in the y-direction than they are in the x-direction.

Note that the definition of ξ and η in (4.59) must be read with the roles of x
and y reversed. In general, one should apply (4.59) with the x-direction chosen as
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the direction of the largest gradient, y in the direction orthogonal to it. Looking at
the front and back of the peak, one appreciates the asymmetry of the profile in the
y-direction. In the x-direction, on the other hand, the solution is unfolded: the peak
is highest along the centerline x = 0.5, and with increasing |x − 0.5|, one sees the
singularity at earlier stages of its evolution.

On the right of Fig. 4.18, the structure of the singularity, as described by (4.63), is
analyzed more quantitatively. In the generic case of 2β not being an integer (2β =
1.71 in the example), we have B = 0, and it remains to calculate A. To that end, we
calculate the minimum H (1)

min of the one-dimensional similarity profile by solving the
one-dimensional similarity equation (4.14). Now we calculate the minimum of h for
different values of y. From (4.63) it follows that

(
hmin(y)

H (min)
1 t ′α

)1/α

− 1 = Aη2, (4.70)

and so A is found from plotting the left hand side as a function of η. On the upper
right of Fig. 4.18, one sees a collapse toward a quadratic profile as τ increases; from
a fit to the quadratic profiles we find A = 1.1. Now we can test for the collapse of
the whole profile using (4.63), as shown on the lower half on the right of Fig. 4.18.
Once again, there is a good collapse and agreement with the self-similar solution,
shown by the dot-dashed line.

4.5 Pointlike and Quasi-1dimensional Singularities:
The Eikonal Equation

4.5.1 Quasi-1dimensional

The difference between pointlike and quasi-one-dim. singularities can be studied
in particular detail using the eikonal equation. Let us concentrate on the cusp case,
described in Sect. 4.2.5 above in one dimension, which corresponds to i = 0, α = 2,
and β = 3/2 > 1/2. However, now we look at the two-dimensional version:

z = t + |t |αh(ξ, η), ξ = x/|t |3/2, η = y/|t |1/2,

with similarity equation

4 h − 3ξhξ − ηhη ± h2ξ = 0.

Differentiating with respect to ξ and putting U = hξ , we obtain

U − 3ξUξ − ηUη ∓UUξ = 0, (4.71)
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a semilinear equation.Before solving (4.71) directly,wenote that the one-dimensional
solution U (1)(ξ) satisfies

ξ = ∓U (1) − C(U (1))3,

and thus according to (4.63),

U (ξ, η) =
(
1+ Aη2)2U (1)

(
ξ + Bη3

(
1+ Aη2

)3/2

)

is a two-dimensional solution. Combining the two equations we obtain

ξ + Bη3

(
1+ Aη2

)3/2 = ∓
(
1+ Aη2)1/2U − C

(
1+ Aη2)3/2U 3,

or
ξ = ∓

(
1+ Aη2)U − CU 3 − Bη3. (4.72)

However, in the case of the eikonal equation this is not themost general solution of
(4.71). Namely, transforming (4.71) to ξ(U, η) we haveUη = −Uξξη,Uξ = (ξU )−1,
and thus

ξUU − 3ξ + ηξη ± 2U = 0,

with general solution
ξ = ∓U −U 3F

( η

U

)
, (4.73)

F being an arbitrary function. However, taking the fourth derivative of (4.73) with
respect to η, we obtain

∂4ξ

∂η4
= − 1

U
Fiv

( η

U

)
,

which is singular at U = 0, unless Fiv(x) = 0, i.e. F must be a polynomial of third
degree: F(x) = A0 + A1x + A2x2 + A3x3. Thus we finally obtain

ξ = ∓U − A0U 3 − A1U 2η − A2Uη2 − A3η
3, (4.74)

which is consistent with, but more general, then (4.72), which only contains three
constants, instead of the four constants contained in (4.74). Integrating, we obtain a
general solution for a wave front in two dimensions:

h = ∓U 2

2
− 3A0

4
U 4 − 2A1

3
U 3η − A2

4
U 2η2 + f̄ (η). (4.75)



4 Free Surface Singularities: From Singular Points to Spatio-Temporal Complexity 161

Fig. 4.19 A lips event with parameters A0 = 2, A1 = 0.3, A2 = 0.5, and A3 = 0.1 (left), and a
beak-to-beak event with A0 = 1, A1 = 25, A2 = 0.5, and A3 = 0.1 (right), as described by (4.76),
(4.77). The red line, described by the first equation of (4.80), is the cusp of the caustic surface,
projected onto the ξ, η-plane. It ends at the position marked by the diamonds

As we can formally parameterize ξ and η by (U, η), and since ηη = 1, ηU = 0,
the caustic condition (4.31) is again 0 = ξUηη − ξηηU = ξU . Using the lower sign
of (4.74) (so that a caustic has formed), we find

1 = 3A0U 2 + 2A1Uη + A2η
2, (4.76)

which defines a curve in the (U, η)-plane, which we can parameterize. Inserting into
(4.74), we find

ξ = 2A0U 3 + A1U 2η − A3η
3, (4.77)

so that (4.76) together with (4.77) defines a curve in the (ξ, η)-plane, as shown in
Fig. 4.19. Two cases arise: if the quadratic form (4.76) is positive definite,

A0 > 0, D = 3A0A2 − A2
1 > 0, (4.78)

(4.76) can only be satisfied if t > 0 (corresponding to the lower sign shown). In this
case (4.76) defines an ellipse, and we obtain a closed curve, as shown on the left
of Fig. 4.19. If on the other hand the quadratic form is negative definite (D < 0 in
(4.78)), we will produce two pieces, as shown on the right.

A typical experiment is shown in Fig. 4.20,where one sees different planes perpen-
dicular to the direction z of propagation. As one travels in the direction of observation
(going from top to bottom), a closed curve separates into two. This is known as a
beak-to-beak event. To interpret this result, we look at the evolution as a function
of time in real space. We have (always for t > 0) y = t1/2η and u = t1/2U , so that
(4.76) is
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Fig. 4.20 A beak-to-beak
event, as described
theoretically by (4.79), and
shown on the right of
Fig. 4.19. Horizontal cuts
through the surface shown on
the right of Fig. 4.21 explain
the transition from a single
piece to two separate curves

z = t = 3A0u2 + 2A1uy + A2y2,

which together with (4.77) defines the caustic surface: all places swept out by the
singularities of thewave front as it propagates in space. Towrite the result in similarity
variables, we introduce Z as a rescaled distance in the propagation direction: z = Zt ,
so that

Z = 3A0U 2 + 2A1Uη + A2η
2, ξ = 2A0U 3 + A1U 2η − A3η

3 (4.79)

defines the caustic surface in similarity variables.
Two examples of such a surface are shown in Fig.4.21, the case D > 0 being

shown on the left, D < 0 on the right. If one considers a cut through either surface
at constant η = 0, one recovers the one-dimensional coffee-cup cusp shown exper-
imentally in Fig. 4.10 or theoretically on the right of Fig. 4.11. As η is varied, the
surfaces end in a line of cusps, shown as the red lines. Indeed, it follows from (4.79)
that ξU = UZU , so the condition ξU = 0 implies ZU = 0 as well, so that ξU = 0
defines the cusp of the caustic surface as U = A1η/(3A0). Plugging this back into
(4.79), the cusp line is parameterized as

ξc =
(

A3
1

27A2
0

− A3

)
η3, Zc =

D
3A0

η2. (4.80)

The space curve defined by (4.80) is shown as the red lines in Fig. 4.21.
This means that for D < 0 the cusp line is bent downwards (see the right surface

of Fig. 4.21), and the caustic singularities appear first as two different pieces, and
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Fig. 4.21 Caustic surfaces in the case of lips (left) and beak-to-beak events (right), as computed
from (4.79); parameters are the same as in Fig. 4.19. On the left, D > 0 and the cusp line (red)
curves upwards, on the right D < 0 and the cusp line curves downwards

are joined together when the plane of observation is raised above the maximum of
(4.80): this is what we introduced earlier as a beak-to-beak event, and the sequence is
shown in Fig. 4.20 going from the bottom to the top. If on the other hand D > 0 (left
of Fig. 4.21), the singularity first occurs at a point in the center, and then expands to
a figure as shown on the left of Fig. 4.19; this is called a “lips” event. The cusp line,
projected onto the (ξ, η)-plane, is shown as the red lines in Fig. 4.19 for both cases.

Catastrophe theory As an aside, it should be mentioned that there exists a highly
developed theory, known as catastrophe theory, which classifies optical singularities.
In doing so, it makes use of the fact that the evolution of a wave front can be written
as a smooth mapping, as can be seen by (4.23) in Sect. 4.2.4 above. The singularities
of such mappings can be classified completely, and allow the description of much
more complicated sequences than those shown above. In particular, the caustics need
not be described by a single set of similarity exponents, but the different parts of the
picture can scale in different ways.

However, the classification is valid only up to smooth deformations, which allows
the picture to be “straightened out”, without there being a systematic way to recon-
struct the original image. For example, in Nye (1999), the caustic surface for the
cusp is reported in the form

ξ2 = (Z − βη2)3, (4.81)

using the same notation as in (4.79). The form (4.81) results from deforming the cusp
line to lowest, quadratic order. However, (4.81) fails to represent the most general
form (4.79) of the caustic surface. Only in the particular case A0 = A3 = 0 does
(4.79) reduce to

ξ2 = 2A0

27A3
0
(Z − A2η

2)3,
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which up to a trivial rescaling is equivalent to (4.81).
However, if one is able to disentangle what the smooth transformations were,

which lead to a simplified version such as (4.81), then one should be able to recon-
struct the structure in full generality. This was achieved by J. Hannay, who found a
generalization of (4.81), which is equivalent to (4.76) and (4.74), yet much simpler:

ξ = aη3 + bη ± α

(
1 − η2

η2
c

)3/2

. (4.82)

The coefficient α is found by comparing the value of ξ(η = 0): α = 2A0/(3A0)
3/2;

the values of a and b are found from the position (ξc, ηc) of the cusp, and the slope
of the cusp tangent:

a = 9A0A1A2 − 27A2
0A3 − A3

1

27A2
0

, b = − A1

3A0
. (4.83)

4.5.2 Pointlike Singularities

Since β > 1/2, the quasi-one-dimensional case described above is the generic one.
However, initial conditions can be found to achieve any kind of singularity, if one
allows to adjust a sufficient number of parameters. In that way one can achieve the
case β = β̄ = 3/2, which we discuss now. It is of codimension 1 (Nye, 1999), which
means a single parameter needs to be adjusted to achieve it. For isotropic singularities
β = β̄ we have solutions of the form

z = t + |t |αh(ξ, η), ξ = x
|t ′|(α+1)/2

, η = y
|t ′|(α+1)/2

, (4.84)

which yields the similarity equation

2αh − (α + 1)
(
ξhξ + ηhη

)
± h2ξ + h2η = 0. (4.85)

This is a fully nonlinear first order equation, harder to solve than the semi-linear
cases encountered so far.

In principle, axisymmetric solutions are possible:

z = t + |t |αh(ρ), ρ = r
|t ′|(α+1)/2

,

and so
2αh − (α + 1)ρhρ ± h2ρ = 0.
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However, this corresponds to a very special initial condition, in which all rays focus
on exactly one point: a highly non-generic situation. Therefore, we look for general
solutions of (4.85), which need not be axisymmetric. The equation is now fully non-
linear, so its solution is non-trivial; it can however be found using Charpit’s method
(Ockendon et al., 2003). In the paragraph below, we will explain a more intuitive
procedure using Fermat’s principle. The result is

h = ±2(#2 + $2) − #
2α

α−1 F
(

$

#

)
, ξ = α − 1

2α + 2
h# ± 4

α + 1
#,

η = α − 1
2α + 2

h$ ± 4
α + 1

$, (4.86)

with F(x) an arbitrary function.Oncemore, for h to be regular, the exponent 2α/(α −
1) must be an integer i = 3, 4, . . . ; then the similarity exponents are α = i/(i − 2),
β = (i − 1)/(i − 2). In the simplest case i = 3 (so that α = 3, β = 2, the so-called
umbilic catastrophe), the similarity solution is

h = ±2(#2 + $2) − #3F
(

$

#

)
, ξ = h#

4
± #, η = h$

4
± $; (4.87)

again, taking derivatives of h with respect to$ we see that h becomes singular unless
F is a polynomial of degree 3: F(x) = A0 + A1x + A2x2 + A3x3.

The caustic condition (4.31) is now

ξ#η$ − ξ$η# = 0; (4.88)

the case i = 3 has codimension 1: another parameter (apart from time) has to be
adjusted to find it. Using the polynomial form of F , the wave front becomes

h = ±2(#2 + $2)+ A0#
3 + A1$#2 + A2$

2# + A3$
3,

ξ = ±2# + 3A0#
2/4+ A1$#/2+ A2$

2/4,

η = ±2$ + 3A3#
2/4+ A2$#/2+ A1$

2/4, (4.89)

and the caustic condition (4.88) is

0 = c11#2 + 2c12#$ + c22$2 ± 2c1# ± 2c2$ + D0 ≡ (4.90)
3A0A2 − A2

1

4
#2 + 9A0A3 − A1A2

4
#$ +

3A1A3 − A2
2

4
$2 ± (3A0 + A2)# ± (3A3 + A1)$ + 4.

Note that the two different signs just lead to an opposite sign of #,$, and so ξ
and η remain the same both before and after the singularity. The condition (4.90),
together with (4.89), again leads to a curve in the (ξ, η)-plane, which is shown in
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Fig. 4.22 The elliptic umbilic (left) and hyperbolic umbilic (right) caustics according to (4.89)
with constraint (4.90)

Fig. 4.22. There are two types, depending on the sign of

D = c11c22 − c212; (4.91)

The case D > 0 is called the elliptic umbilic, shown on the left, while D < 0 is called
the hyperbolic umbilic, shown on the right of Fig. 4.22. For a proper description of
the singular case D = 0 one needs to consider higher order terms, which break scale
invariance. To obtain the figure, we parameterize (4.90) by writing it as a quadratic
form in the variables # = # − #s and $ = $ − $s , and then insert it into (4.89)
to obtain a curve in the (ξ, η)-plane.

Experimental images such as Fig. 4.23 can once more be interpreted as cuts
through a caustic surface at different levels Z in the propagation direction. Such
a caustic surface is obtained in the same way as before, giving

ξ = −2Z# + 3A0#
2/4+ A1$#/2+ A2$

2/4,

η = −2Z$ + 3A3#
2/4+ A2$#/2+ A1$

2/4,

0 = c11#2 + 2c12#$ + c22$2 − 2c1Z# − 2c2Z$ + D0Z2, (4.92)

where z = |t |Z as usual. An example is shown in Fig. 4.24, and seen to correspond
well to the top of Fig. 4.23. The hyperbolic umbilic at the bottom of Fig. 4.23, on the
other hand, corresponds well to the theoretical prediction on the right of Fig. 4.22.

Similarity solutions via Fermat’s principle Here we show how to derive similarity
solutions using Fermat’s principle, having the advantage of using a single scalar
function ℓ, as defined by (4.24). We focus on the “isotropic” solutions of Sect. 4.5.2,
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Fig. 4.23 Experimental realizations of the caustics seen in Fig. 4.22. Top: Elliptic umbilic; Bottom:
Hyperbolic umbilic

Fig. 4.24 The elliptic
umbilic surface, as described
by (4.92)
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since they are difficult to find directly from the similarity equation (4.85), which is
fully non-linear but the quasi-one-dimensional solutions can be found in the same
way. The idea is to start from the perfectly focusing solution (i.e. a circular wave
front) and to add a perturbation. Let the initial condition be parameterized in two
dimensions by u ≡ (ϕ,ψ). Let us consider a circle of radius 1 at time t = −1, so
that a perfect focus is produced at the axis x = y = 0, z = 1, at t = 0:

f = 1 −
√
1 − ϕ2 − ψ2, t = −1.

We focus on the umbilic case i = 3, but the procedure can be generalized.
Based on the similarity solution, we have

x = t2ξ, y = t2η, z = 1+ t + t3 h,

where the additive constant ensures z = 1 for t = 0; this is valid for t > 0. Focusing
takes place at t = 1. Corresponding to the scaling with t3, we choose the perturbation

f = 1 −
√
1 − ϕ2 − ψ2 + ϕ3G(ψ/ϕ). (4.93)

To ensure t3 ∼ ϕ3, we put ϕ = t# and ψ = t$, so that G = G($/#).
To account for the initial condition being for t = −1, we want to solve (ℓ = ct)

ℓ2 ≡ ℓ2 − (1+ t)2 = 0,

where
ℓ2 = (x − ϕ)2 + (y − ψ)2 + (z − f )2, (4.94)

so that the wave front is described by

ℓ2 = 0, (ℓ2)ϕ = 0, (ℓ2)ψ = 0.

An explicit calculation yields

ℓ2 =
(
t2ξ − t#

)2 +
(
t2η − t$

)2 +
(
1+ t + t3h − f

)2

= t2#2 + t2$2 − 2t3(ξ# + η$)+ (1+ t)2 − t2
(
#2 + $2)

− t3$2 + t3
(
h − #3G

)
+ O(t4),

so that at leading order ℓ2 = t3φ, with “potential”

φ = h − #2 − $2 − 2(#ξ + $η) − #3G($/#) = 0.

Thus according to the condition ℓ2 = 0 we obtain



4 Free Surface Singularities: From Singular Points to Spatio-Temporal Complexity 169

h = 2(#ξ + $η)+ #2 + $2 + #3G($/#).

The extremal conditions φ# = φ$ = 0 yield

ξ = −# − 3#3G + $#G ′, η = −$ − #2G ′,

respectively. Plugging this into the above we finally have

h = −1
2
(#2 + $2) − 2#3G($/#), (4.95)

which corresponds to (4.87).

4.6 Spatial and Temporal Complexity

It is now time to tie together the different strands presented here. Without wanting to
sound too grandiose, our ultimate aim is to describe a situation as shown in Fig. 4.25,
which shows an example of turbulence. A characteristic of turbulence is a spatial
superposition of disordered patterns over many scales.

To achieve something like that, we have to combine two different properties of the
thin filmequation: disorder, and unfolding into space.We consider the phase diagram,
Fig. 4.26, to find appropriate values of n and m. We recall that the approximate

Fig. 4.25 A turbulent jet
injected into another fluid at
Re=4.5 × 103 (Dimotakis,
2000), in a plane normal to
the jet axis. The color map
codes jet-fluid concentration
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Fig. 4.26 Phase plane of the two-dimensional singularities of (4.10) (Dallaston et al., 2021a). The
blue solid line is the border (4.58) between regular and complex behavior, the black dashed line is
the border (4.62) between pointlike and quasi one-dimensional behavior. For smaller values of m,
and n > 1.87 (below the orange dot-dashed line), there is a return to regular behavior. The symbols
correspond to numerical simulations of (4.10) with initial condition (4.69)

conditionm > 0.8(n − 1) characterizes regular dynamics, as shown as the blue line,
below which the self-similar dynamics become periodic, or even more complicated.
The other important transition is marked by the dashed line n = 1+ m, below which
the singularity is unfolded in the transverse direction. Thus below the blue line we
have a combination of periodic or a-periodic instability, with new structures being
created at smaller and smaller scales, and quasi-one-dimensional behavior, which
unfolds this fractal structure into space.

An example of a simulation of (4.10) is shown in Fig. 4.27, where n = 3 and
m = 1.3 (black square), so according to (4.58), we are in the irregular regime. On
the left hand side, we show a perspective plot of 1/h. While the peaks are smooth in
the regular case, seenon the left of Fig. 4.18, they are nowbrokenup intomany smaller
peaks, producing a spatially “spotty” behavior. In the y-direction, one observes the
result ofmultiple instabilities, as seen on the right of Fig. 4.12 for the one-dimensional
case. In addition, as x is detuned from 0.5, this irregular behavior is seen in different
phases of its evolution, producing the hierarchy of peaks seen in Fig. 4.27. To empha-
size the resulting complex spatial picture, on the right of Fig. 4.27 we also represent
1/h as a color contour plot in the plane.

As a further illustration, in Fig. 4.28 we show a snapshot of 1/h for a simulation
of (4.10) with n = 3,m = 1 (black square in the phase diagram of Fig. 4.26), similar
to that shown in Fig. 4.27. In that case, the one-dimensional dynamics is no longer
merely periodic, but new structures keep being generated as one evolves toward
smaller scales. Owing to the mechanism of unfolding, these new structures are trans-
lated into space, producing a spatially complex picture. As a result, one obtains a
much more fractured picture than in the periodic case. This is clear especially on the
right of Fig. 4.28, where a contour plot of 1/h reveals a spatially complex pattern.
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Fig. 4.27 Simulation of (4.10) with n = 3,m = 1.3 (α ≈ 0.63,β ≈ 0.72), and initial condi-
tion (4.69), using ϵ1 = 0.05, ϵ2 = 0.03, href = 0.1. A quasi one-dimensional, irregular singularity
results, with periodic orbits. On the left a perspective plot of 1/h for τ = 8.7. Along the one-
dimensional front, one observes a sequence of instabilities. On the right, a contour plot of one of
the peaks of 1/h (taken at the same time) shows the irregularity of the profile. The color, from blue
to red, encodes 1/h

Fig. 4.28 Simulation of (4.10) with n = 3,m = 1, and initial condition (4.69), using ϵ1 =
0.05, ϵ2 = 0.03, and href = 0.1, in the non-periodic regime. On the left, a perspective plot of 1/h
at τ = 8.36; on the right, a contour plot. The color code corresponds to Fig. 4.27
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Fig. 4.29 Simulation of (4.10) with n = 3,m = 1 in a large domain [0, 3] × [0, 3],
using Basilisk (Dallaston et al., 2021a). On the left, the initial condition h0(x, y) =
0.05 [1 − 0.05 cos 2π(x/3 − 1/2)] [1 − 0.03 cos 2π(y/3 − 1/2)], as a color plot of 1/h. In the
middle, a color plot of 1/h for hmin = 1.2 · 10−2. Dark red corresponds to the smallest h, blue
to the initial height. On the right, the grid generated by Basilisk, with blue corresponding to level
7 (" = 3/27 = 2.34 × 10−2), and dark red to level 12 (" = 3/212 = 7.32 × 10−4)

A similar scenario, applied to singularity formation in the Euler equation, has been
proposed some time ago by Pumir et al. (1992).

The non-periodic nature of the singularity also implies a sensitive dependence on
initial conditions, as illustrated in Fig. 4.29. We show a larger spatial region, which
encompasses more than 6 Rayleigh wavelengths λR = 0.44 (see (4.12)) of the most
unstable mode of the initial film. As seen on the left of Fig. 4.29, the film is perturbed
slightly on the scale of the entire domain, producing a non-uniform picture of decay;
the initial condition is seen to have a fourfold symmetry. We use the Basilisk version
of our code, owing to its capabilities of automatic refinement.

Since the evolution depends sensitively on the initial condition, slight changes in
the initial condition translate into non-periodic behavior on the small scale. In the
final image, the local singularity is seen in many different stages of its evolution,
producing a very non-uniform picture (Fig. 4.29, middle, where hmin = 1.2 · 10−2).
Owing to small differences in how the refined grid is generated (see the image of the
grid on the right), the fourfold symmetry of the initial condition is broken, and each
local singularity looks different. We confirmed that a different choice of parameters
for grid refinement leads to a qualitatively similar result, but with a different pattern
of broken symmetry. We conjecture that the square pattern of rupture points is a
result of the square grid used by Basilisk. We have also performed simulations in a
large domain for the parameters of Fig. 4.18, for which the dynamics are regular. No
symmetry breaking was observed, as expected.

Although our simulation of the large domain in Fig. 4.29 does not have sufficient
resolution, each local rupture point will have the intricately folded structure seen
at a higher resolution in Fig. 4.28. Thus non-periodic singular behavior leads to a
very intricate superposition of structure in space, but also in scale: upon a change of
magnification, new patterns are seen.
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