Breakdown of scaling in droplet fission at high Reynolds number
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In this paper we address the shape of a low-viscosity fluid interface near the breaking point.
Experiments show that the shape varies dramatically as a function of fluid viscosity. At low
viscosities, the interface develops a region with an extremely sharp slope, with the steepness of the
slope diverging with vanishing viscosity. Numerical simulations demonstrate that this tip forms as
a result of a convective instability in the fluid; in the absence of viscosity this instability results in

a finite time singularity of the interface far before ruptuie which the interfacial curvature
diverges. The dynamics before the instability roughly follow the scaling laws consistent with
predictions based on dimensional analysis, though these scaling laws are violated at the instability.
Since the dynamics after rupture is completely determined by the shape at the breaking point, the
time dependences of recoiling do not follow a simple scaling law. In the process of demonstrating
these results, we present detailed comparisons between numerical simulations and experimental
drop shapes with excellent agreement. 1897 American Institute of Physics.
[S1070-663(197)00306-1

I. INTRODUCTION p the fluid density. Figure 1 shows several shapes for three

different fluid viscosities: the radius of the water nd€kg.

Droplet breakup has been a SL_’bjec_t of scientific SCrUtimfL(a)] is much larger than the viscous length scale, which is
for over 100 years. Early contributions include Plateau’s de—Only 140 A. Increasing the viscosity by a factor of 109g
scription of the instability mechanisi,ord Rayleigh’s cal- 1(b)] leads to a 1increase irl,. At such a high viscosity,

cglatlon of the most unstable Wav?lenétM/orthlngton > the shape is slender near the breaking point. For even higher-
pictures of splashes,and Edgerton’s high-speed strobo- . . . B X
viscosity fluids like glycerol K,=1 cm) the slenderness is

scopic photograph$,® which first revealed the intricate more pronouncefFig. ()], with a much more gradual tear-
shapes during rupture. grop shape ' '

In the 1970’s, there was a resurgence of interest in je ' . .
breakup’ ™! mainly driven by its technological relevance . The goal of the present paper is to understand the quz.ah-
(e.g., to ink jet printing Detailed experiments studied the tative differences between the shapes in these pictures: at

= ' high viscosities, the connection of the fluid thread to the drop

dynamics of both high- and low-viscosity fluid jets emanat-,

ing from a nozzle, focusing on the early stages of pinching!S gradualFig. 1(c)], whereas at low viscosities the shape is

A principal goal of this work was to understand the control Nighly asymmetric, with an abrupt transition from the thread
of the size distribution of satellite droplets. More recently,© the drop separated by a region of extremely steep slope
numerical methods have been developed to study jet decalffi9- 1@]. In fact, as will be shown below through experi-
based on the assumption of inviscid, irrotational f®wr ments and numerical simulations, the steepness of the slope
highly viscous Stokes flod?~° actually diverges with vanishing viscosity. Through a com-

From a mathematica' point Of VieW drop'et breakup pro_bination Of I’lumerical Simulations and eXperimentS, we will
vides a simple example of singularity formatitit*® Start- ~ attempt to answer the following questions: What sets the
ing from a smooth initial shape with finite fluid velocities, a scale of the asymmetry? How does the asymmetry vary with
breaking drop develops singularities in a finite amount offluid viscosity? And how does this asymmetry arise from the
time in which physical quantities, such as the curvature oflynamics leading to droplet fission?

the interface or the fluid velocity, diverge. A fundamental  In addressing these questions, our study will focus on a
question is to determine the nature of the flow in the neighfundamental idea about how liquid drops break, originally
borhood of the singularity. introduced by Keller and Miksi&* Arbitrarily close to the

For a liquid drop breaking in vacuum, the shape near thdreaking point there are no external length scales describing
breaking point depends critically on the viscous length scalethe interface, so the dynamics should $edf-similar? the
first identified by Peregrinet al,?° defined as shape of the interface when the minimum radius i
»p should be the same as the shape when the minimum radius is
|,=—, 10 um, modulo rescalings of the axes. Peregréieal. re-
Y fined this ide&” and applied it to their experiments on falling
wherev is the kinematic viscosityy the surface tension, and water drops: They point out that for low-viscosity fluids
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FIG. 1. Shape of the fluid interface immediately before rupture, for three different visco(a')idswaterszo:0.0l cnd/s; (b) is a 85 wt. % glycerol water
mixture with a viscosityy = 100qu0; (c) is pure glycerol with viscosity = 1200qu0.

there is a range of scales where the thickness of the fluithread thickness is far greater than the viscous lefigth
neck is much larger than the viscous length sdalebut  times greater for a water drop falling froa 4 mmnozzle, a
much smaller than the length scale, where energy is fed intglynamical instability produces another small length scale,
the system. Over this range of scales, the self-similarity hywhich destabilizes the similarity solution. In the absence of
pothesis might be expected to hold. For high-viscosity fluidsy;iscosity, this instability actually causes a singularity in the
the thickness of the thread is usually much smaller han o, ature of the interface before rupture occurs. This insta-

so that self-similarity will also hold. bility of the scaling solution at low viscosities provides a

These considerations suggest that a breaking fluid inter- . . .
face should be described by a similarity solution to the gov_natural explanation for the steep front in water drgpi.

erning hydrodynamic equations. The first study to ourl(a)]' AIt_hough thgre Is no inviscid singglarity after breakup,
knowledge that succeeded in constructing a similarity solu:[he scaling behavior before preakup IS |m_pr|nted on_the time
tion for a breaking fluid thread was for the rupture of a dropdePendences after breaktifsince the solution at the time of
in the two-dimensional Hele—Shaw c&I7 This initial suc-  Preakoff provides an initial condition for the recoiling; the
cess was followed up with the identification of further simi- Shape at the rupture point is not a perfect power law, which
larity solutions for the Hele—Shaw céfi?® as well as the results in a more complicated time dependence than power
discovery of a similarity solution for three-dimensional drop- law scaling.
let fission for fluid threads with thickness much smaller than ~ The paper is organized as follows: The second section
1,.24"% In this case the similarity solution is unstable to introduces the experimental and theoretical frameworks by
finite-amplitude perturbatiorfs, with the critical amplitude  presenting a detailed comparison between a numerical simu-
for instability approaching zero at the singulaffyAt the ation of a drop falling from a faucet and experimental pho-
high viscosities where this similarity solution is rglevgnt, thetographs. The simulations use a one-dimensional “long-
droplet shape is long and slender, as apparent in K@. 1\ 5yelength” approximation to the full hydrodynamic
The question addressed in this paper is whether S'm'laéquations developed previougf?%3! The agreement be-

scaling ideas can explain the interfacial shapes during thRNeen simulations and experiment is remarkably good, with

breakup of low-viscosity fluids, such as the water drop insimulations reproducing detailed features of the experiment
Fig. 1(a). Based on the above discussion, this translates intd b 9 b '

the question of whether the self-similar singularities in theevgn though the Iong—waveleng.th assumption does not. hold
equations ofinviscid hydrodynamics describe experiments Uniformly throughout the breaking. The next two sections
when the thread thickness is larger than the viscous lengthfudy in detail the solution near the breaking point in the
scalel ,? To answer this question, we will describe in detail low-viscosity limit. In Sec. lll we address solutions before
the characteristics of a water drop falling from a nozzle botHPreakup, while in Sec. IV we address the situation after
before and after a fission event. Through a combination obreakup. In both cases we combine available theoretical, ex-
experiments, numerical simulations, and theory, we argugerimental, and simulational evidence to provide a complete
that the scaling hypothesis fails for this problem. When thepicture of the singularities.
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Il. FORMULATION OF PROBLEM the HyCam were transferred onto videotape and analyzed
with a computer. For precision pictures of the droplet shape,

. The e_xpenmental conflgurafuon addressed in this PaPELe used a medium format camera with an open shutter and a
is the falling of a drop from a circular nozzle. We consider

the limit of slow dripping: the drop is adiabatically filed - oPc; When the drop began to fall, it interrupted a laser

ith fluid until the sh b table. Two di ~ beam incident upon a photodiode. After a variable time de-
with fiuid untif the shape becomes unstable. Two ImenslonTay, this triggered a fast 5 MS EG and G MVS-2601 Strobe.
less parameters characterize this situation: the Bond numb

GH both cases, the lighting was from the rear so that the
Bo=R?pgly; liquid/air interface would be plainly visiblgSince the drop
acts like a small lens, the edges of the liquid appear black
and bright spots appear along the axior close-up photog-
Re=(R/1,)*2 raphy, the lens was attached via a bellows to the camera.
The mathematical problem assumes the dynamics of an
axisymmetric column of fluid with kinematic viscosity,
densityp, and surface tensios falling in vacuum. The fluid
dnoves via the incompressible Navier—Stokes equations, aug-
mented with the two boundary conditions th@t normal
stresses are proportional to the mean curvature(aptan-
gential stresses are zero. The final condition is that the inter-
che moves with the fluid.
The full hydrodynamic equations are difficult to under-
nd theoretically or simulate numerically. We instead con-

and the Reynolds number,

Here R is the radius of the nozzlgy is the gravitational
acceleration, ang, |,,, and y are the fluid parameters de-
fined above.

Several groups have recently studied large-scale featur
of a drop dripping from a circular nozzf8:"*?Here, we are
primarily concerned with the nature of singularities in the
limit of zero viscosity(infinite Reynolds number Near the
rupture, there is a large separation between the time scale
the flow at the singularity and the time scales characterizin%ta
flow fields far from the breaking point. Thus, it is expected ™. L

sider a long-wavelength approximation of the full

that properties of singularity formation are only weakly de- 943031 : .
pendent on the specific experimental setup—in this case theequatloné by systematically expanding the full equa-

Bond number Bo. The results of this paper should therefor(gonS in powers of a slenderness paramgter. Another _deriva—
apply to droplet breakup at high Reynolds number in an lon qf the Iong-wavelgngth equatlons., IS presentgd n Ap-
experimental configuration. Indeed, Edgerton’s initial obserpendlx A, which .eluc[dat.es the phys!cal congtramts: The
vation of sharp interfaces in low viscosity fluids occurred inf_orm of the _equatlons is fixed by seeking the_3|mplest non-
several experimental setups, ranging from his famous picl—Inear equations that preserve _the conse_rvat|on _I(ims_s
tures of splashédo fluid falling from a nozzle. and_ momentu_mof the f.IOW’ \_/vh|le Bgese“"”g Gahlee_m_ n-
The goal of this section is twofold: first we describe g vanance, an 'de{i that IS quite .C%' The only nontrivial
simplified model for understanding the drop dynamics. Ante'm (_jescnbes viscous dissipation: this term follows _by de.—
inviscid version of this model was first proposed by B2e, man_dlng that the equations a]so generate the same dispersion
viscosity was later included by Bechtel, Forest, and ¥in, relat!on of Iopg-wavelength d|.sturbance's as the full hydrody—
Eggers and Duporit. and Sellend! Then, we present two namic equations. The evqluthn equations for the interface
sets of experiments and simulations and compare the resultréd'USh(z’t) and the velocity fielt(z,t) are
The first set studies a water drop falling from a nozzle, while  (h?),=—(h%),, 1)
the second set focuses separately on the thin neck region

separating the drop from the nozzle. Eggers and Ddfont _ 3 2.y

already presented such a comparison for Peregrine’s photo- Vet UV2 Reh? (M%), s+ Bo, @
graph of a water drop immediately before it breaks. Here we

continue the simulations through the rupture of the initial _ 1 _ h;. 3)
drop and the satellite drops until the original drop is sepa- hyi+h? (yJ1+h2)3/)’

rated from the nozzle by several smaller satellite drops. The ) ] )
simulations continue to describe the experiment, even for th¥/nere we have nondimensionalized all lengths by the nozzle

nearly spherical satellite drops, when the long wavelengtfiddiusR, and all times by the basic time scale

approximation clearly no longer holds. HR3
The experiments consisted of photographing a low- 7=1\/—. (4)
viscosity fluid, deionized water at room temperature, drip- Y
ping from a thin vertical nozzle. The rate of drop formation Note that the equations as written above violate the
at the nozzle was kept small so that the initial velocitiesasymptotic derivation in powers of the slenderness
could be assumed to be negligible. This was determined b|;;ar<';1mete|3,6 since they selectively include higher-order
decreasing the rate of flow until the macroscopic shape of thterms inh,. Specifically, it would be asymptotically correct
drop no longer varied with the rate. The diameter of theto approximate,/1+ hf%l, and also to neglect theg,, term
nozzle could be varied. The photographs were taken in twentirely>® The reason for including these terms is twofold:
ways. In order to determine the shape of the drop as a fundirst, only by keeping the higher-order terms in the pressure
tion of time, we used a HyCam 400 16 mm movie camerado the equations have the correct equilibrium shapes, which
which, with its quarter-frame attachment, could take a maxiis important for capturing the flow away from the breaking
mum of 44 000 frames per second. In order to measure thgoint?* Second, even starting from a cylinder as an initial
movement of the drop as a function of time, the frames fronmcondition, the asymptotic equations show exponential growth
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at arbitrarily short wavelengths. In simulations, this showsshows that overturning never occurs before the initial fission
up as rapidly growing oscillations on the scale of the com-event, but does tend to occur during the oscillations of the
putational grid, which would have to be damped out by somesatellite drops. Typically, overturning in satellite drop oscil-
ad hoc method without the presence of the higher-orderlations occurs for experiments with larger nozzi@ond
terms. numbers than Fig. 2. The long-wavelength equations avoids
The numerical simulations solve a finite difference ver-overturning(which would result in a singularityby produc-
sion of the lubrication approximation discussed above. Théng a large amount of dissipation where overturning is about
details of the finite difference method have previously beerio occur. This feature allows the simulations to be continued
discussed in several plack<*1°?"We briefly summarize to arbitrarily long times; however, the agreement between
the major points of the simulations; technical details are resimulations and experiments degrades afte(experimen-
served for Appendix B. The finite difference equations aretal) overturning event.
solved implicitly, resulting in a system of nonlinear equa-  Recently, Schulké$ performed a boundary integral
tions at each time step, which are solved using Newton’simulation of aninviscid irrotational fluid dripping from a
method. The time step is dynamically adjusted to contronozzle, and presented a detailed comparison of his simula-
several different indicators of the numerical error. The coddions with the Peregrinet al?° experiments on water drops.
employs a dynamically evolving mesh, which is essential forAn interesting difference between the present simulations
obtaining the level of resolution necessary to resolve thénd Schulkes’ inviscid simulations is that the latter demon-
breaking adequately. The mesh is adjusted whenever pré&trate overturningpeforethe initial fission event, whereas the
specified conditions on the solution are satisfied. When thérmer do not. The reason for this difference will be elabo-
minimum thickness of the droplet drops below a thresholdfated in detail below: Based on comparisons of experiments
the code “breaks” the drop, by dividing the computational and simulations, we argue that this difference is because the
domain into two pieces and then interpolating the shape oPng-wavelength equations more accurately describe the dy-
the interface around the breaking point. Once the drop i§!amics than the assumption that the flow is inviscid and
artificially broken, the equations are solved at each mesHrotational. Our simulations show that viscosity is a singular
point. Numerical tests demonstrate that the large-scale rerturbation to the dynamics in the long-wavelength equa-
sults are independent of the method of cutting the thread; iions; the inclusion of adarbitrarily smal) amount of vis-
particular, decreasing the threshold thickness for “breaking”cosity stops overturning during rupture. The agreement be-
does not affect any of the results. The details associated withveen these simulations and experiments leads us to
implementing this procedure efficiently are discussed in Ap_conjecture that the full equations also contain this singular
pendix C. A typical simulation lasts a few hours on a SUN Viscosity dependence.
Sparc 20. Now we summarize another set of simulations and ex-
As an illustration of how closely simulations match the Periments to be used in the remainder of the paper in ana-
experiment, in the following figures we focus on a water!yZzing the dynamics of the rupture. Immediately after rup-
drop falling from aR=1.5 mm nozzlgBo=0.3, Re=330. e, 'the interfaceéwheﬁ viewed on a Iength sgale larger than
In both experiments and simulations, the drop is slowly filledthe Viscous scajeconsists of a sharp conical tip attached to a
with fluid, passing through a sequence of equilibrium Sh(,ipeéphem_:al shgll. Figure 3 shoyvs a sequence of the recoil f_rom
at a critical volume, the drop falls from the nozzle. Figure 2P0th simulations and experiments, for a water drop falling
shows both experimental photographs and simulations at diffo™m @ R=3.5 mm pipette(Bo=6.5, Re=500. The initial
ferent stages of the breaking: Initially the drop hangs fromState of the drop was prepared exactly in the manner as for
the nozzle in equilibrium. Then the drop falls, pulling out a tN€ Previous simulatiofi.e., by passing through a sequence
thin neck that separates it from the nozifiég. 2(a)]. After of equilibrium shapes We show only the thin neck region

breaking[which occurs between the times of Figbpand separating the drop of fluid from the nozzle, since this is the
Fig. 2(c)], the drop continues to fall, while the thin neck relevant regime for the analysis in the following sections;

recoils toward the nozzlg-ig. 2(c)]. As the thin neck recoils, however, we emphasnze th‘f"t the agreement between simula-
capillary waves are generated and propagate towards tHions and expe_nments per3|sts _throughout the entire drop, as
nozzle. These waves are excited since the wave speed fggmonstrated in the previous figure. The speed of the pho-
capillary waves coincides with the retraction speed of thetOQrath was enhanced by a fa_lctor of 4 by_[s)nntmg four
fluid neck(see Appendix € Then the recoiling neck breaks successive p|ctur§($eparated in time by 2:510 . 9 ona-
at the top of the thin neck, near the noziig. 2(d)]. S|r_19Ie frame of film. In each frame, the earliest time is
It should be emphasized that the simulation contains n(g'm?d at the pottom, _aqd Iategt frame at the top. The fo_ur-
free parameters: given the dimensionless Bond number B ld increase in the timing gained allows a more precise
and Reynolds number Re the shapes are uniquely determin&d
by the dynamics. We find it remarkable that such a simpl
model can capture so many details of the breaking procesi.“' SHAPES NEAR RUPTURE
It should be noted, however, that these simulations can- In the remainder of this paper, we analyze the pictures
not capture all qualitative aspects of the experiments: in paraiming at a complete description of the interfacial shapes and
ticular, simulations of the long-wavelength equations are nofluid velocities close to a breaking event. For water drops,
capable ofoverturning where the thicknesh(z) becomes the viscous length scale~0.01 um is much smaller than
double valued. Close examination of movies of water dropshe length scales visible in the photograplerger than 1

alysis of the singularity reported in Sec. IV.
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FIG. 2. Left panel: Photographs of a water drop falling from a nozzle with ra@iad.5 mm(Bo=0.3, Re=330. The nozzle is visible at the top of the

picture. Right panel: Sequence of shapes from numerical simulations ofg€3) for the same configuration. The times were chosen so that the drop shapes
match the experiments. Length scales are in units of the droplet radius. In both simulations and experiments a pendant drop is filled adiabatically until it
becomes unstable and falls.
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FIG. 3. Comparison of numerical simulatiofisft) and experimentgright)

for the recoiling fluid neck of a drop falling from nozzle with radius
R=3.5 mm. The characteristic time=2.4x10"2s. The lengths of the
successive drop@n units of the radiusin the simulations are 1.8, 1.5, 1.45,
1.27, and 1.16, respectively. The times between the successive photographs
(in units of 7) are 0.092, 0.01, 0.03, and 0.02, respectively. The times be-
tween the successive frames from simulations are 0.15, 0.013, 0.03, and
0.02, respectively. Note that the neck in the first photograph is at a slightly
later time than the first simulation frame. The absolute length of the velocity
vectors is normalized by the maximum velocity. Sections IV and V give
detailed comparisons of the time dependences in simulations and experi-
ments near the breaking point.
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um). This separation of scales leads to the expectation thaquation resembles a forced kinematic wave equation, in
the viscous stresses showhivaysbe much smaller than the which high-velocity regions move faster than low-velocity
other forces when the drop thickness is much larger thamegions. This leads to an instability that forms discontinuities
|,. If this is true, then the viscous term 3(R® (v, in in velocity gradients in finite time. The continuity equation
Eq. (2) can simply be dropped when analyzing the flow field: implies that a discontinuity in a velocity gradient also causes
thus, inviscid hydrodynamics might be expected to be suffi-a discontinuity in the slope of the drop. A finite but arbi-
cient for describing rupture. trarily small viscosity changes the situation drastically: the
In their classical papéet; Keller and Miksis advanced a steepening of the gradients is stopped by viscous stresses
dimensional argument suggesting the time dependences oftefore the interfacial curvature diverges. The viscosity sets
recoiling inviscid wedge. Their argument is sufficiently gen-the value of the maximum curvature, and thus the maximum
eral that it applies to the inviscid dynamics of any surfaceslope, and therefore has macroscopic consequences on scales
tension driven flow near a singulari§.The application to  of the order of the drop radiusyenwhenl , is infinitesimal.
droplet breakup was emphasized by Perediindhen vis-  This instability provides a natural explanation for the striking
cosity is unimportant, the only relevant dimensional paramdifference between the interfacial shapes near rupture for flu-
eters near the singularity are surface tensjoand the fluid ids of different viscosity(see Fig. 1 At low viscosity this
densityp, since the external forcing and initial conditions are additional singularity causes the sharp front observed in ex-
assumed to be unimportant. Using these parameters and tperiments.
dimensional time intervaAt from the singularity(either be- The initial recoiling after breakup for fluid dripping from
fore or aftej, only one length scale can be formed, namely a nozzle does not manifest the inviscid convective instability
13 just described: We show in Appendix C that when starting
(Z) (A1)23 (5) from a cone as the initial condition, simulations obey the
dimensional scaling laws discussed above. However, be-
In dimensionless units, witt = At/ the dimensionless time cause of the breakdown of scaling before breakup, the shape
interval to the singularity, this length i€t')=t"Y3. If | js  at the rupture point deviates from a cone on scales much

indeed the only length scale governing the dynamics, thef@rger thanl,. Using mass and momentum conservation,

the shape and velocity field should obey a similarity SO|uti0nKe"er29_' showed that the initial conditions directly affect 'the
of the form dynamics after breakup. Therefore, after breakup a simple

scaling will only be observed over a range of scales set by

, 4 how closely the shape at the rupture point is a pure power
h(z,t)=1(t )H(,(t—,)), © Y P PHre P pare P
, . A particularly sharp way of illustrating this problem is
v(z,t)= I(t') V( z ) @ the set of scaling solutions for the recoiling of an inviscid
' t’ I(t")) drop proposed by Ting and Kell&?.They pointed out that

there are actually a continuous family of other possible simi-

where z'=z—z, is the position relative to the point of larity soluti 1o the lubricati i ther tii@nand
breakupz,. These equations are exact solutions of the equaf"lrl y solutions to the lubrication equations other tiehan

tions (1)—(3) at zero viscosity. (7). The more general form,

The question is whether this dimensional argument suf- z'
fices to explain the experiments and simulations presented N(Z,t)=lagia(t")H W) ®
above. There are two assumptions hidden within the argu- e
ment, which could cause it to fail in practice: First, it is iS also a possible solution to the dynamical equations as
assumed that when the interfacial thickness is larger than tHé—0 as long as
viscous length scale the viscous stresses are irrelevant; there | adio= Rl axiat/ R) 2. (9)
might be dynamical mechanisms that make viscosity impor-
tant on a length scale different from the viscous length scald hese solutions are consistent with the long-wavelength as-
|,. Second, it is assumed that the singular solution is not agumption whenevep>1, so thatl g, goes to zero faster
all affected by the outer length scales, i.e., those set b§han!aiy. Note that these solutions require the introduction
boundary conditions at the nozzle or initial conditions. Al- of an additional length scalR. Correspondingly, the solu-
though it is generally true that scaling exponents are indetions(8) and(9) also have a different asymptotias/ayfrom
pendent of outer scales, it is often the case that prefactors dbe singularity: since the solution must be time independent
depend on outer length scales. The mechanism for this is th&&r from the breaking point, the scaling functiét(£) must
the singular solution must bmatchedto the solution far obeyH (&)~ & at large, so thath(z)~z”.
from the singularity, which generically introduces constants
in the singular region depending on the outer scales.

We will demonstrate below thdleforebreakup the di- IV. SHAPES BEFORE BREAKUP
mensional scaling law fails because viscosity becomes im-
portant when the drop radius is much larger than the viscous In this section we analyze the dynamics before rupture to
scale. This fact was already indicated by Eggers andstablish the claims made above. We begin by measuring the
Dupont?* and is a consequence of an intrinsic instability in characteristic thickneds,,,, of the interface as a function of
the inviscid equations: without viscosity, the momentumtime of the figures shown above.

Phys. Fluids, Vol. 9, No. 6, June 1997 Brenner et al. 1579

Downloaded-04-Dec-2001-t0-128.135.164.25.~-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



10 T T T 10 T T
10" |
£10°
£
10°
.4 1
10 ! L L 10 L L
10* 10° 10° 10" 10° 10" 10° 10°
(a) (t:-t) (© {t
10"
102 L | FIG. 4. (a) Measurements of the minimum thickndsg, of the interface
as a function of the timé, — t to rupture. Solid dots denote experimental
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Figure 4a) showsh,,,(t) for the second breaking event responding td,—t~10" 3. Beforet,—t~ 10~ 2° simulations
for both theory and experiments shown in Fig. 4. The mini-show a decrease of the minimum thickness consistent with
mum thickness was measured in units of the drop raRius the t?® law; however, the simulation shows that a drastic
and the time was measured before to the singular tymén  event occurs near this timkTg, causing a severe deviation
simulations the singular time could be measured exactly. Extrom the scaling law. This event can be seen in all simulated
perimentally it could be measured to within one frame of thequantities. Examining the experiments with this result in
movie corresponding to a time error af 2.5x 10 ° s. Note  mind, there also seems to be a slight deviation of the data
that the time is measured in terms of the time scale given ifrom straight power-law behavior arourtig—t~5x10"3,
(4) to facilitate comparison between simulations and experithough it is difficult to establish this conclusion definitively
ments. As aboveR denotes the radius of the nozzle. The with current resolution(We remark, however, that we were
absolute scale on the photographs was not directly measuregiable to get rid of the slight “glitch” in the experimental
but was instead deduced by comparison with simulationstime dependences near the breaking point by adjusting the
The simulations can also measure the characteristic length ¢éime of rupturety. This is consistent with our conjecture that
the interface and the maximum fluid velocity as a function ofthe deviation from power-law behavior is a real effgct.
time to rupture. These dependences are shown in F{gs. 4 We will discuss the physical origin of this behavior be-

and 4c). low. It is demonstrated that the timeTg at which the de-
Note that the viscous length scale ix40 ¢ in dimen-  viation fromt? occurs isindependenof the viscosity of the
sionless units, far below the scales shown. fluid; for a fluid of viscosity ten times smaller than that of

Does this numerical data agree with the dimensionalvater the deviation also begins negrt=10 3. Thus, the
scaling law? There are two separate points to make: Thecaling range does not become larger as the Reynolds num-
experiments can resolve X80 ° s before the rupture, cor- ber Re—. This indicates an intrinsic failure of the dimen-
1580 Phys. Fluids, Vol. 9, No. 6, June 1997 Brenner et al.
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FIG. 5. The maximum slope of the interface as a function of time to rupture
from simulations. The similarity solution equati@) predicts that this slope
should be constant in time.

sional scaling argument, which suggests that the agreement
between tha?® law and experiments is somewhat artificial.
Also, below, we present further experimental evidence for
the breakdown of the assumptions leading to the dimensional
scaling law, based on the shapes of the profiles.

What is the reason for the complex time dependence? It
is counterintuitive that the minimum thickness does not de-
crease monotonically as the drop breaks, but actualy
creasedor a short time. The origin of this can be understood
by carefully examining the shape profiles: Figure 5 shows
the maximum slope of the profile as a functiontgf-t: The
inviscid similarity solution predicts that the slope should be ()
constant. Before the nonmonotonic glitch, during the time
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period when the scaling laws are consistent with the dimenFIG. 6. (a) Rescaled profiles from numerics before the curvature singularity

sional scaling laws, the slope is constpmtax,)~2]; how-
ever, att,—t~ 102 the slope increases rapidly, saturating to
a constant valugmaxh,)~110].

(to—t=10"%). Both horizontal and vertical scales are rescaled hy (
— )22 The location of the final breaking poir is subtracted from each of
the profiles. The solid, dotted, dashed, and long dashed lines represent
to—t=0.03, 0.01, 0.003, and 0.001, respectively) Collapsed profiles

The major consequence of the time dependence of thffom experiment. The location of the final breaking paigtis subtracted
slope is that when the profiles are rescaled according to Edfom each of the profiles. The solid, dotted, dashed, and long dashed curves

(6), the shapes daot collapse on the steep side of the pro-
file, as shown in Fig. &. Thus, even though the time de-
pendences agree with the dimensional predictions, the shapes
are not self-similar in time, even befotg—t~10"3, when

representt,—t=0.019, 0.011, 0.007, and 0.003, respectively. Note that
these experimental profiles show no evidence of overturning.

the time dependence seems to agree with the dimensionahing. A profile that has overturned looks perfectly flat when

scaling laws.
This same behavior can be seen in experiméhig.

viewed from the side, as done in the experiments. The fact
that the simulations and experiments agree so well before

7(b)]: Profiles were extracted from the images using the im-breakup provides evidence that no such overturning occurs
age processing package IDL, and then rescaled as outlindgkfore breakup. As remarked before, the situation is different
above: both radii and horizontal length scales are scaled bguring violent satellite drop oscillations, where flat portions
the characteristic lengtl{t’). The experimental profiles also appear at the end of a drop.

do not collapse onto a single curve, implying that the dy-

The interfacial shapes in both simulations and experi-

namical behavior deviates from the similarity solution equa-ments are inconsistent with the similarity soluti¢®). Al-
tion (6). Qualitatively, the experimentally collapsed profiles though the characteristic length scales do agree with the

[Fig. 7(b)] are very similar to the simulatiori&ig. 7(a)].

similarity solution over a range of scales, the agreement

It is interesting to note that simulations of inviscid, irro- breaks down in a regime where the similarity solution should
tational flowt?” show an overturning of the profile at a finite still hold. Again, we emphasize that simulations with even
time away from the singularity, rather than a gradual steepsmaller viscosity show that the deviation from the scaling
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FIG. 8. Maximum slope as a function of Reynolds number, extracted from

FIG. 7. Maximum slope during the course of a simulation as a function ofthe liquid bridge simulations of Fig. 7.
time for liquid bridge simulations, for various Reynolds numbers. A liquid
bridge is a cylinder of fluid held at constant radius at both ends.

were done for a liquid bridgéa finite cylinder of fluid

pinned at both endsnstead of drops falling from a faucet;
solution occurs very near the time the deviation occurghe major differences are the absence of gravity for the liquid
above, so that the deviationn®ta consequence of the finite pridge, and the different initial conditions for the two cases.
fluid viscosity. Although the basic qualitative features of the formation of
the curvature singularity are independent of experimental
configuration note that there are several quantitative differ-

The overall deviation from self-similarity occurs becausegnces between the dynamics of Fig. 7 and Fig. 5: the jet

the slope next to the breaking point grows by a factor of 5Qsimulations have a different early time transient than the
on a time scale much faster than the pinching. This steepenyop simulations. Also, at the highest Reynolds number
ing is a remnant of a finite time singularity in theviscid  (Re=4273), the jet simulation shows a nonmonotonic be-
equations; without viscosity, steepening leads to a singularityayior. We do not know if this nonmonotonic behavior per-
in which the local gradients in the velocity blowup in finite sjsts when Rese. There are two important qualitative fea-
time. The mechanism of the steepening is a convective instayres of Fig. 7: first, the maximum slopgivergesas the
bility: regions of high velocity are convected at higher ve- Reynolds number Re<. Figure 8 plots the maximum slope
locities, leading to a singularity in which the velocity gradi- a5 a function of Reynolds number for the above simulations.

ent diverges with the velocity remaining finite. This pointsto  The points are numerical data, and the solid line repre-
the dynamical formation of a new length scége,, Which  sents the scaling law

approaches zero in finite time. The mechanism is reminiscent o5
of shock formation in compressible hydrodynamics. For flu- ~ Max h,~Re"%. (10)
ids with finite ViSCOSity, ﬂle convective instability is StOppEd We cannot be sure, however, that this exponent represents
beforel g e— 0, at a scalé set by the viscosity. The length the asymptotic scaling law. Note that R4273 represents a
| controls the maximum steepness of the front. This mechafluid with one-tenth the viscosity of water, falling from a 1
nism therefore provides a natural explanation for why low-cm nozzle. At the point where the slope reaches its maxi-
viscosity fluids have very sharp fronts. mum, the smallest features resolved are of the size’,10
The maximum slope of the sharp front is controlled bywhich is the best we can do with the present numerical simu-
the dynamics of the steepening. If the inviscid or Lee’s equalations.
tions are simulated, rapid growth occurs at the highest wave The second important point is that the time at which the
numbers, and the solution is dominated by fluctuations orsteepening begins is roughly independent of Reynolds num-
the scale of the grid. Therefore, we performed a series ober. Therefore, we conclude that the steepening is a remnant
simulations at increasing Reynolds numbers, which we lateof a finite time singularity in the inviscid equations, in which
extrapolate to the inviscid case. Even for the largest Reythe interfacial curvature diverges. This “curvature singular-
nolds numbers, no high-wave number instability was ob-ty” is distinct from the singularity at rupture, and introduces
served. Figure 7 plots the maximum slope for the Reynolds. new length scale into the problem a finite time from the
numbers Re43, 427, and 4273 as a function of the time to rupture. This is the reason that the dimensional scaling laws
rupture. All of the plots demonstrate a rapid increase in théoreak down before rupture. Moreover, the inviscid equations
slope up to a saturation level determined by the Reynoldsre not able to describe the bifurcation of a liquid drop, as
number, similar to Fig. 5. the curvature singularity provokes a breakdown of the equa-
Finally, we note that the simulations depicted in Fig. 7tions before breakup occurs.

A. The curvature singularity
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As a word of caution, we reiterate that our theoreticalcoil according to theé?? scaling law. Measurements of how
description was based on an equation that has not been deis sharp tip relaxes after the rupture can be extracted from
rived from the Navier—Stokes equations; moreover, the forboth experiments and simulations, in the same manner as
mal motivation for the equations breaks down in the limit of outlined above. There are two dynamical length scales of
sharp slopes. The argument that we are making is(fhahe interest: the length (t) that the tip has recoiled a timeafter
lubrication equations show this curvature singulari);the  the rupture, and the characteristic thicknasgs$) of the neck.
solutions of the lubrication equations agree quantitativelySimulations can also measure the veloeity of the recoil-
with experiments, and therefof@) it appears that the full ing tip. Figure 9 shows plots of these quantities from both
equations must also show a curvature singularity in the inexperiment$Fig. 9(a)] and simulationgFigs. 9b) and 9¢)].
viscid limit, of the type described here. The actual structurene remind the reader that the rupture time used for this
(e.g., time dependencesf the singularity in the full Euler figure is exactly the same time as the one used for the analo-
equations may be different than the structure in the lubricagous plots before breakup. Thus, given the rupture time de-

tion equations. termined before breakup, the plots after breakup contain no
free parameters.
B. After the curvature singularity Although the experimental data seems to be consistent

with the dimensional scaling laws, in the simulations there

wh f\fitef[hther curl\t/iiturgz r\:,mrﬂ;“a’r;t%/'r:is si,toppredirt:]y \\//Ivshcors't?//\; are rather severe deviations, especially very close to the rup-
at 1S the resuiting cynamics: s IS aregime WNere We o time. It should be noted that the deviations from the

on!y have 5|mulat|o_nal e_wdence. Since the curvature SIN9Y%imensional scaling law occur when the droplet thickness is

larity occurs at a time independent of Re, in principle as ! . :

. . far greater than the viscous length scale. The basic question

Re—x, there could be a large scaling region for another. - : ) .

. . : D . .. is whether the deviation of the simulations from the dimen-

scaling solution. One possible scenario is that viscosity is. . -
. . . i . sional scaling law representsfandamentalor if it merely
only important in a thin boundary layer region, where it sets o L :

. . . reflects a breakdown of the approximations within the simu-

the maximum slope. In the other parts of the solution, VIS _tions

ity i [ il the mini hick . .
cosity Is not important until the minimum thickness crosses The reason for the breakdown in the scaling laws for the

the viscous length scale. Depending on how strongly the two. . -

. S . Simulations can be understood by examining the shape of the
parts of the solution affect each other, Keller—Miksis scaling; : . .
could be observed interface immediately at the point of rupture, before any re-

Although the simulation above does seem to follow acom?]g ocgur'i(_Flg@)lthecall th‘.'ﬂ tlht? egpfenm;ntal sh$pes,
t2 law in the maximum velocity after the curvature singu- 25 STOWN IN FIQ. &), SNOW a conical Up betore the recoling.

larity, the scaling of the other quantities behaves differently. . -[?r? sntw:]ulanons. can tproI:JQ rTUCthIOS?:r. t(()a)tgﬁ tt);ﬁakmg
Moreover, the profiles in this regime do not collapse uponpOIn an the experiments. 1Lis clear from g atthe

rescaling. We take this as a hint that immediately after theShape at the instant of rupture in the simulations is more

curvature singularity there is a transient regime in which nocompllcated than a simple conical gifhough at large scales

scaling occurs. Neither our numerical simulations nor outh€ shape does look conigalThe region bracketed in the

experiments are able to resolve what happens after transierﬂgure between 0.83z<0.91 is conical, though there are

settle down, so that we are not able to determine the structufE@nsitions to different shapes on both sides of this region.

of the solution in this asymptotic regime. F'igure 1@b) shqws a closeup of the region on thg left-hand
We remark that Chen and Steen have recently carrie§id€ Of the conical tip, nearest to the breaking point.
out an interesting stud$ of the dynamics of a membrane The closeup revealsinother conical region between
with surface tension surrounded by an inviscid fluid. Theird:799< 2 < 0.8, and also a crossover to amore slender region
study shows a regime before rupture similar to that showr'€arZ= 0.795. The .compllcated structure of the mterface at
here, where the interfacial shape is single valued and thf'® TuPturé point is a remnant of the dynamics before
122 breaks down. However, in their example, the subsequerfi€@Kup. The crossover z¢0.795 noted in Fig. 1) arises
dynamics is quite different than that described here: Notablyfom the curvature singularity before breakup, anglscorre-
in their case, the interface overturns before pinchpfi- SPonds roughly to the interfacial thicknesBy(;~10""),
comes double valugdAfter overturning, the dynamics even- Where the curvature singularity saturateee Fig. 6 The
tually returns to the?3 scaling. We believe that the differ- Crossover between the two conical regions rea0.83 oc-
ence between the two studies is that in the present study s when the recoiling tip interacts with the capillary waves
curvature singularity is regularized by viscosity, which stopsc@used by the recoiling of the first rupture at the bottom of
the steepening of the slope and prevents overturning. Howthe neck{see Fig. 4a)].
ever, more work on the limit of infinite Reynolds number in ~ The argument of Kelléf based on mass and momentum

the full Navier—Stokes equation is necessary. conservation of the recoiling tiisee Appendix ()IS_hows that
the time dynamics of recoiling reflects the detailed structure

of the initial shape. If the initial shape is a power law, then
the time dependences are power laws; Given the complicated

Immediately after rupture, the shape of the interface onnitial shape in the present situation, we expect the time dy-
the length scales of the experimental photogrdtig. 4(b)] namics after breakup to be more complicated than a simple
looks like a sharp conical tip attached to a spherical shell. Ascaling law, with crossovers corresponding to the crossovers
conical tip has no intrinsic length scale, and thus should rein the initial shape.

V. SHAPES AFTER RUPTURE
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Indeed, the two crossovers noted in the time depen3(a)]: in this case, the crossover due to the curvature singu-
dences of Fig. ®) to the crossovers in the initial shape. The larity still occurs at the same characteristic thickness, while
first crossover, occurs when the recoil length is 30and  the crossover at large scales is completely absent, as no cap-
corresponds to the crossover noted in FigblOThe second illary modulations exist before the recoiling. It should also
crossover occurs when the recoil length is aroundi® 1, be noted that Fig. @) is completely inconsistent with the
and corresponds to the large-scale crossover in Fip).10 dimensional scaling law™ %3, even in the range where the
These crossovers are also apparent in the scaling for the tlpngth is roughly consistent with the dimensional scaling
velocity vg,. There does exist a region on the plot of thelaw.
recoil length where the time dependence is well approxi- As mentioned in our description of the dynamics before
mated by the?® law. This region, betweety—t~10 3and  breakup, a more precise test for whether the scaling hypoth-
to—t~2x10"? occurs nearly at the same time that the ex-esis is realized is to collapse the profiles by their character-
periments show time dependences consistent with thistic length scales. Because of the complications outlined
Keller—Miksis laws (Fig. 9. The “wiggles” appearing in above we focus on only the regime where scaling occurs.
the simulations at times larger thag—t>2x102 do not  Figure 11a) shows the interfacial profiles after rupture from
seem to exist in the experimental d@ag. 9a)]; this seems the simulations, rescaled according to E6), for several
to represent a quantitative discrepency between the experiifferent times after the rupture.
ments and the simulations. To substantiate that the A similar procedure can be applied to the experimental
“wiggles” arise from the interaction of the recoiling neck data, as shown in Fig. 14). The data collapse reasonably
with capillary waves in the initial shape, we have studied thewell, although only over a finite range in similarity variables.
time dynamics of recoiling at the bottom of the ndékig.  The reason for this is twofold: First, there are finite size
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simulations. Because the shape is not a power law, the argument of Keller
(see Appendix € suggest that the time dependences will not be perfect (
power laws.(b) Closeup of(a) of the initial shape of the interface before
recoiling.

-zt

FIG. 11. (a) Collapsed solutions from simulations for the recoiling fluid
neck.(b) Collapsed solutions from the experiment. Length scales are mea-

. . . . sured in pixels from the photographs.
effects associated with the neck having a finite length and

observations being made a finite distance away from the sin-
gularity. The second reason is the initial shape is not a purgiscosity fluid drops, in order to understand better the dy-
power law, and this causes deviations. namics at low viscosity. The simulations are of one-
In Appendix C we show a simulation thdbesstart out  dimensional evolution equations that were previously
with a conical initial shape, and show that it is perfectly derived by several groufs*°using asymptotic analysis from
described by the Keller—Miksis scaling theory. This vali- the Navier—Stokes equations. In Appendix A we present an
dates the argument of this section that the deviations fronalternative way of looking at the equations emphasizing
the Keller—Miksis scaling law are not because of a dynamisymmetries and conservations laws. The version of the equa-
cal instability but instead complications in the initial shape. tions employed here uses an approximation of the mean cur-
vature that captures the exact equilibrium shapes of pendant
drops. Because of this, the numerical simulations and experi-
ments are in quantitative agreement well beyond the initial
Experiments demonstrate that the shape of a fluid disfission event. We present a series of two experiments and
plays a dramatic dependence on fluid viscosdy Fig. 1). simulations, demonstrating the excellent agreement between
Whereas high-viscosity fluids are slender near the breakingimulations and experiments throughout the breaking pro-
point, water drops exhibit a sharp conical tip. In this papercess.
we have presented detailed comparisons between experi- Detailed comparisons between the dynamics of the
ments and numerical simulations of the breaking of low-simulations and the experiments uncovered several intrigu-

VI. CONCLUSIONS

Phys. Fluids, Vol. 9, No. 6, June 1997 Brenner et al. 1585

Downloaded-04-Dec-2001-t0-128.135.164.25.~-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



ing features of the dynamics of low-viscosity fluid drops. In the profiles from the experiments. We are also grateful to the

this study we demonstrate the presence cbavective insta- referees, both for their insightful comments, and for their

bility of the drop shape before breakup. The dynamics of thgatience during the review process.

instability is reminiscent of shock formation in gasdynamics,  This research was partially supported by the MRSEC

and occurs because regions of high fluid velocity are conProgram of the National Science Foundation under Award

vected faster than low-velocity regions. This instability is No. DMR-9400379. In addition, M.P.B. acknowledges a Na-

stopped by viscous stresses; in this way viscosity sets thiéonal Science Foundation postdoctoral fellowship, and the

scalefor the steep tip in water drops. The convective insta-Sloan Fund of the School of Science at MIT. J.E. acknowl-

bility reflects that the infinite Reynolds number limit is sin- edges support by the Deutsche Forschungsgemeinschaft

gular: the convective instability forces equations withthrough Sonderforschungsbereich 237.

Re=x to develop a finite time singularity well before the

drop breaks. With very small viscosity, the sharp tip forms

on a very fgst t|m§ scale well before rupturg, though the f'rSkPPENDIX A' DERIVATION OF LUBRICATION

bonafide singularity occurs at rupture. An intriguing Conse'EQUATIONS

guence of the formation of a sharp tip is that for fluids with

viscosity much smaller than water, so that the viscous length  In this appendix, we motivate the nonlinear evolution

scale is smaller than the molecular length scale, the conveequations by relying on conservation laws and symmetries of

tive instability is actually regularized by molecular effects the full equations. Our principle aim is to emphasize that the

instead of viscous dissipation: in this case, the hydrodynamifobng wave equations are the simplest one-dimensional partial

equations break down well before the drop itself breaks. differential equations that could be expected to model the
In this study we provide a concrete example of the com-motion of a droplet. The discussion is similar to the previous

plications that can occur in describing a singularity. Al- work of Greer’® whose theory was applied by Shiettial #2

though dimensional arguments and their corresponding simifhe first equation that the fluid must satisfy is mass conser-

larity solutions are suggestive, in general whether they argation:

actually realized depends on subtle dynamical issues, which ) )

at present are not entirely understood. Instabilities of scaling (h%)¢==(h"v), (A1)

solutions in the limit where dissipation approaches zerqyhereh(z,t) is the thickness of the fluid neck an axial dis-
might be important in other contexts where singularities 0Cygncez from the nozzle, and(z,t) is the azimuthal compo-
cur in inviscid flows, such as the three-dimensional Eulefant of the velocity. As in the main text, we nondimension-
equation. An example of of a basic issue that we still do nojizeq lengths by the nozzle radiuB, and times by

gnderstand .is why the system chooses the similarity squtioryp—Ral—y_ Galilean invariance implies that the equation of
in Eq. (7) with B=1 before breakup, corresponding to the stion is of the form

Keller—Miksis scaling law. In principle, any value gfcould
have occurred, and would have caused both different time vi+vv,=—«,+D, (A2)
dependencgs and different interfacial shgpes away from .thv(\a/herex is the curvature an® is the dissipation function. A
breakup point. Although our study confirms that there is
something special about the similarity solution suggested b
dimensional analysis, we do not understand the dynamica
mechanism that selects this solution. Perhaps selection prin-
ciples, analogous to those used previously in resolving simi- E:f dz thZJFf dz hV1+h§’
lar issues for traveling wave solutidisare relevant for the
formation of Singu|arities_ Satisfies&tE < 0. This Implles thap= OE/ éh, and thatD is

On a different level, this study provides another stepof the form
toward understanding the dynamics, leading to the breaking
pf a fluiql drop. The general pic_ture emergi_ng is th_at rupture  D(h,v)= Py [—fo+(fu,),
is described by a number of different scaling regimes; The
particular state of the drop is_cpntrolle_d by dimensionle_ss —(f30,9) 25+ (F 40522227+ 1,
parameters formed by combining fluid parameters with
length scales characterizing the drop. Since the latter are tim&here thef; are positive definite functions af andh. The
dependent, a drop typically passes through several differetalues of thef; can be obtained to leading order 8gmand-
scaling regimes during a single fission event. Understandinii!d that the model equations exactly reproduce the linear
the details of each scaling regime individually, and when thegrowth rate of the full hydrodynamic equations. For the case
various crossovers occur, yields a quantitative description obf present interest, liquid falling into vacuum, this implies

the breaking dynamics. thatf,=0 andf,=3/Re.
Thus, the equations are

eneral form forD andp follows from the requirement that
Fe total energy,

ACKNOWLEDGMENTS (h?)=~(h%),, (A3)
We thank Dan Mueth and David Grier for assistance Dot Dp= 3 (h2.),— K (Ad)

with writing the image processing programs used to extract ' Z"Reh? yz e
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1 h,, High resolution is achieved by using a dynamically ad-

K= 5 53| (A5)  justing mesh. At low viscosities there are two different sin-
hyi+h? (J1+h) gularities: one associated with the minimum height going to
where Re is Reynolds number. zero, the other with diverging gradients. Thus we monitored

The most important point of this argument is that theboth the minimum height and the gradient of the mass flux
model equations are constructed so as to dissipatéotak hv. If either changed by a specified percentage, new mesh
energy of the fluid while preserving thexactdispersion re-  Points were added to the grid. The mesh is organized by
lation of linear disturbances, in the long-wavelength limit. defining an underlying macrogrid, and adjusting the number
This means that the model is guaranteed to predict exactl9f microgrid elements into which each macrogrid is divided.
the correct equilibrium shapes of the theory, as well as thé\fter introducing new grid points, the solution is reinterpo-

correct linear disturbances for modulations about a cylinder@ted onto the new grid. Typically linear interpolation or cu-
bic splines are used.

A subtlety of this procedure is that at places where the
mesh spacing changes by a factor of 2, we observed an in-
stability of the discretized equations. This may be connected
The numerical simulations utilize a second-order cenWith the fact that our spatial discretization was only first
tered finite difference scheme of the partial differential equa-Order correct at_thsse pla_cémeca_us? of thé,,, term at the
tions (1)—(3), which has been previously described in severarneSh pomt_}s Th's_ numenc_al noise do_es_ not have a Ia_lrg_e
places. The goal of this appendix is to mention the variouseffeCt on highly viscous fluids, though it is capable of initi-

pitfalls and tricks that were necessary to develop for theating instabilities in viscous similarity solutions. However, as
simulations reported in this paper Re—o these effects are quite substantial and make accurate

There were two different numerical challenges: the firstnumerical simulations very difficult. In order to perform the

involved issues associated with breaking the drop and Simucgmulaﬂons at the highest ngnolds numbers, !t was neces-
lating the subsequent dynami@Sigs. 2 and 3 A priori it sary to smooththfe mesh. _Th|s was doqe by diffusing t.he
was unclear that these simulations would work because di'€Sh Points until the ratio of neighboring mesh spacings
the concerns about overturning expressed in the main tex ,lffe_lr_edbby IﬁSS t:an a percen(tj. the followi q A
and demonstrated in completely inviscid simulations. It was 0 break a drop, we use € Toliowing procedure.

i ; i 5
also necessary to develop algorithms to deal with the simut-hreShOIOI thicknesByeswas definedtypically 10°°). When

lation of many drops simultaneously. the minimum thickness of the fluid neck passes belgygs

The second numerical challenge was to resolve the varit-he drop is manually broken into two pieces, by attaching

ous singularities described in this paper. We emphasize th&lmha” _spr|1er|ca| masses gf fIU|d_to gat():h gnd. Tf:f radlhus (.)f thhe
in order to achieve enough numerical data to make accura erical masses was determined by demanding that it has

assertions about singularity mechanisms, it is necessary fP"'Stant pressure. The interpolation of the spherical mass

haveat leastseveral decades of power law behavior. WithoutOnto the fiuid was done so thét, IS contmugus. Ext.enswe. .
several decades of scaling, it is possible to be fooled in twdests revealed that the macroscopic dynamics was insensitive

possible ways: first convergence to similarity solutions doed0 Poth the precise spatial location of the breaking point as

. . . : : Il ashyyres
not occur exponentially in time, but instead exponentially in\Weé thres .
—log(ty—t). This means it typically takes a few decades of Once the drop was broken, each of the drops remaining

scaling for the transients to die out and reveal the true scalin@’ere %V(t)rl]ved byt.the co;je. Tr? € thlfkndss tthe \éeloc(;t);h
behavior. Without several decades of scaling measurements’ &" € positions; of each point were stored an €

of exponents will be inaccurate; the latter can be Self_equations of motion applied at each time step. Regridding

consistently tested by determining if the solution converge?rovecj to be crucial for following through many ruptures, in

to the spatial structure of the similarity solution. Second,Order to always have enough mesh points.

recent work® has demonstrated that there are concrete physi-

cal examples of singularities which can destabilize at arbi-

trarily small time distances from singglarities. Although this APPENDIX C: IDEALIZED INITIAL CONDITIONS:

can never be ruled out completely in a purely numericalcoNES AND CUSPS

study, a sufficiently large number of decades of scaling

makes this outcome less probable. We have seen that simple theories based on a rescaling
Before proceeding into specific issues that arise withof the pinch region are invalidated by the appearance of an-

each of these problems, we first summarize some of the gemther singularity, which introduces a second length scale not

eral procedures. The time step control was adjusted so thdirectly associated with the pinch. This inviscid singularity is

only one Newton iteration was required at each time stepconvective in character, and thus arises through the mass flux

The time step is adjusted by using a two step method: foacross the pinch region. After breakup, this mechanism is

each time step, we first step Iy, and then redo the calcu- absent, because the flow across the pinch region is inter-

lation with two time steps of sizAt/2. The relative error in  rupted. Hence it seems as if self-similar solutions should

the solution is then computed. Typically the time step isexist after breakup. However, it turns out that the solution

controlled by demanding that the relative error is less than after breakup depends heavily on the shape of the interface

fixed thresholde.g., 1%. ho(z) =h(z,0) at breakup, which in turn is a reflection of the

APPENDIX B: NUMERICAL CONSIDERATIONS
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: : , To exemplify the dependence of the solutiontg) we as-
sume that

T | ho(z)=bz*, pB=1, (C3

as was done by Ting and Kell& We hasten to add that a
self-similar solution withB+# 1 was never observed experi-

10° | ] mentally or in simulations. The casg=1 was observed
4 over a limited scaling range, whose size does not expand for
decreasing viscosity. To focus on scaling properties, we as-
sume that
10° 1 W(t')~t' e, L(t')~t', (C4)
From (C1) one has
W~ L (28+ 173
10-7 - ,'s |.4 |.2 0 o . .
10 10 10 10 10 and combining that witfC2) one obtains
()
2 (2B+1 2 5
“ 3| g2 * gz (©3

FIG. 12. Time dependences for the recoiling lengtlas a function of the
time t—t, from the initial cone. The dots represent numerical data and the
solid line is the Keller—Miksis scaling law. The crossovel_at 10 * cor-
responds to the small-scale cutoff in the initial condition.

Two crucial observations are to be made here: First, the
solution explicitly depends op, i.e., on the initial condition
hg. If hy does not scale like a power law, as it is observed in
simulations, neither willw or L. Second, only if3=1,
which corresponds to Keller—Miksis scaling, will the solu-
dynamicsbefore breakup. If additional length scales play a tion be describable by a single rescaliéig z/L of the ab-
role before breakup, they are thus also introduced into thecissa. Namely, foB=1 w andL both scale like'??® as to
dynamics after breakup. be expected from Keller—Miksis scaling, while 81 the
This is immediately evident from the arguments ad-two will scale differently. The time dependence of the neck
vanced by Keller® and worked out in more detail by Keller, lengthL agrees with the scaling law proposed by Ting and
King, and Ting}® using a matched asymptotic expansion.Keller2° which is based on the scaling ansésy, (9). How-
The first assumption is that velocities at breakup are smakver, the width of the tipw is in disagreement with this
compared with the velocities produced by the violent recoil,scaling fors> 1. This is not surprising because the underly-
so hy(2) is the only input needed. The second assumptioning assumption is that the slop is negligible, which evi-
which was validated by the matching in Ref. 43, is that thedently is not the case near the tip. Therefore, the solution
fluid contained in the part of the neck that has already remust assume a more complicated structure, the neck and the
coiled is sucked up into a spherical head. Intuitively, this iStip region being governed by different scaling laws.
because there is no flux across the head, so it is accelerated Finally, we discuss the cagg=1 in a little more detail,
uniformly by the recoil, and assumes a static shape. To a firgiince it can be understood completely within the framework
approximation, one neglects the crossover region betweesf our simplified model(1), (2). It also gives the closest
the bulbous head and the static part of the neck, which hagpproximation to existing experimental data. Namely, in that
not yet recoiled. Thus, apart froiny(z), the geometry is case(6), (7) is an exact solution of the inviscid equations, if

completely specified by the recoil lengti(t’) (which de- H andV obey the similarity equations
fines the head’s center, with=t—t, the dimensionless time

from the initial cong and the width of the heaal(t'). Fig- 22 _vw—tvnh
ure 12 shows the time dependences from a numerical simu- 3 3 2 ’
; - . : : . (Co)
lation of a recoiling cone. The initial shape is conical with a ., .
small spherical cap of siZe,, so thatl (0) andw(0) are of Vo2 NV YN 1 H
order hy. The time dependences agree quite well with the 3 3 HV1+H'Z (J1+H'%3)
Keller—Miksis scaling law, except for a small transient pe- ) o ) o
riod of orderyh3p/y (in dimensional units Here the primes denote a derivative with respect to the simi-
Mass conservation gives larity variable¢. These equations have to be solved subject to
two sets of boundary conditions. At infinity andV should
4w . L, behave like
3 w°—1 | hg(z)dz=0, (Cy
° H=ag V=bi'? (o)
and from conservation of energy we have and at the tip, located &t=&,, one has
2 L 2§
= wiLZ+ 4ww2—277f0 hov1+ hgzdz] =0. (C2 H(&)=0, H'(&)=%=, V(&)= TO (C8)
1588 Phys. Fluids, Vol. 9, No. 6, June 1997 Brenner et al.

Downloaded-04-Dec-2001-t0-128.135.164.25.~-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



1J. PlateauStatique Experimentale et Theoretique des Liquides Soumis aux
Seules Force MoleculairéGauthier Villars, Paris, 1873

2W. S. Rayleigh, “On the instability of jets,” Proc. London Math. Sd.

10 (1878.

3A. M. Worthington,A Study of Splashgsongmans, London, 1908

4H. E. Edgerton,Stopping Time: The Photographs of Harold Edgerton
(Abrams, New York, 1987

5E. A. Hauser, H. E. Edgerton, and W. B. Tucker, “The application of the
high-speed motion picture camera to the research on the surface tension of
liquids,” J. Phys. Chem40, 973(1936.

H. E. Edgerton, E. A. Hauser, and W. B. Tucker, “Studies in drop forma-
tion as revealed by the high-speed motion camera,” J. Phys. Chgm.
1017(194)).

"R. J. Donnelly and W. Glaberson, “Experiments on the capillary instabil-
ity of a liquid jet,” Proc. R. Soc. London Ser. 290, 547 (1966.

8E. F. Goedde and M. C. Yuen, “Experiments on liquid jet instability,” J.
Fluid Mech.40, 495(1970.

°D. F. Rutland and G. J. Jameson, “A nonlinear effect in the capillary
instability of liquid jets,” J. Fluid Mech46, 267 (1971).

10K, C. Chaudhary and T. Maxworthy, “The nonlinear capillary instability

. . of a liquid jet. Part 2: Experiments in jet behavior before droplet forma-
FIG. 13. Collapsed numerical data for the recoiling cones. Each of the tion,” J. Fluid Mech. 96, 275 (1980.

syr_n5bols refers to ?fmf?“ca' data, cggresponding to t_hle timég @rcles, 11k ¢ chaudhary and T. Maxworthy, “The nonlinear capillary instability
10 (scﬂuare}s 10" (diamonds, 10" (triangles, 10"~ (side triangles of a liquid jet. Part 3: Experiments on satellite drop formation and con-
and 50~ (X) from the initial conical shape. The solid line is a similarity .0/ » 3 Fjuid Mech. 96 287(1980

solution of the inviscid equations. N F X

12N. N. Mansour and T. S. Lundgren, “Satellite formation in capillary jet
breakup,” Phys. Fluids A2, 114(1990.
13H. A. Stone, B. J. Bentley, and L. G. Leal, “An experimental study of
Two free parameters, which are the tip position and the ve- transient effects in the breakup of viscous drops,” J. Fluid M&atg 131
locity gradientV’ (&) at the tip have to be adjusted to make 14&9i@-St L G Leal “Relaxati 4 breakub of an initall
. . . A one an . . Leal, elaxation an reakup or an Initially
the SOIUUOOS match the free constaatandb in (C7) This extended drop in an otherwise quiescent fluid,” J. Fluid Met98 399
procedure is analogous to the one employed in Ref. 26 for 19g9.
viscoussolutions. 5M. Tjahjadi, H. A. Stone, and J. M. Ottino, “Satellite and subsatellite
In Fig. 13 a solution ofC6) is compared with the result _formation in capillary breakup,” J. Fluid Mecl243 297 (1992.
of a simulation. starting from a perfect cohg(z)=az and 18p, Constantin, T. Dupont, R. Goldstein, L. Kadanoff, M. Shelley, and S.
. ' 9 P Zhou, “Droplet breakup in the Hele-Shaw cell?,” Phys. Rev4E 4169
zero initial velocity. The valu@=0.13 was chosen close to (1993,
the opening angles observed in Fig. 3, while in experiment’T. Dupont, R. Goldstein, L. Kadanoff, and S. Zhou, “Finite-time singu-
unfortunatelyb is not available. Among other things, the larity formation in Hele—Shaw systems,” Phys. Rev4F, 4182(1993.
excellent agreement between simulation and the prediction™: E- Goldstein, A. 1. Pesci, and M. J. Shelley, “Topology transitions and
L . . singularities in viscous flows,” Phys. Rev. Left0, 3043(1993.
of S|m|la_r|ty theqry ShQWS that the small amoum of VISCOSIty 19, Bertozzi, M. Brenner, T. Dupont, and L. Kadanoff, “Singularities and
present in the simulation does not appreciably affect the So-similarities in interface flow,” inCentennial Edition, Applied Mathemat-
lution on scaled.>1,. Thus the viscous terms do not repre- Zoics Seriesedited by L. Sirovich(Springer-Verlag, Berlin, 1993 o
sent a singular perturbation, as was the case before breakupP: H- Peregrine, G. Shoker, and A. Symon, “The bifurcation of liquid
The similarity solutions also allow for an analytical un- bridges,” J. Fluid Mech212 25 (1990.
- y - . Yy 213, Keller and M. J. Miksis, “Surface tension driven flows,” SIAM J. Appl.
derstanding of the capillary waves excited on the surface, math. 43, 268(1983.
which are the most characteristic feature of inviscid solu-2G. I. Barenblatt,Similarity, Self-Similarity and Intermediate Asymptotics
tions. Namely, repeating the perturbative analysis of TingZS(RCOA”ISU'ta”‘SEUéeiU’ New EO'\VAK' Plg);g estable and unstable <i
9 . . . mgren, A. bertozzi, an . P. brenner apble and unstable singu-
and Keller® for the mOdel(l)’ (2), we find the amp“tUde and larities in the unforced Hele—Shaw cell,” Phys. Fluigisl (1996.
wavelength of capillary waves on the receding cone as &;j. gggers and T. F. Dupont, “Drop formation in a one-dimensional ap-
function of the parametera and b. The wavelength just  proximation of the Navier—Stokes equation,” J. Fluid Me@&2, 205

depends om, reflecting the weak dependence of the solution, (1994. , o _ _
on the initial velocity field: 25). Eggers, “Universal pinching of 3d axisymmetric free-surface flow,”

Phys. Rev. Lett71, 3458(1993.

9 a 1/2 263, Eggers, “Theory of drop formation,” Phys. Fluids 941 (1994.
A=2m| = -1/2 (C9) 27X. D. Shi, M. P. Brenner, and S. R. Nagel, “Cascade of structure in a drop
8 (V1+ a2)3 ) falling from a faucet,” Science265, 219 (1994).

%M. P. Brenner, X. D. Shi, and S. R. Nagel, “lterated instabilities during
Thus the wavelength gets shorter farther away from the tip. droplet fission,” Phys. Rev. LetlZ3, 3391(1994.

The analytical formulas are confirmed beautifully by the 293, B. Keller, “Breaking of liquid films and threads,” Phys. Flui@§, 3451

\ ) & : (1983.

simulation, but are difficult to ob;erve experimentally, be-sog Bechtel, M. G. Forest, and K. J. Lin, “Closure to all orders in 1d

cause of the shortness of the scaling range. models for slender viscoelastic free jets: An integrated theory for axisym-
The same observation was made by Schufkesho metric, torsionless flows,” Stability Appl. Anal. Continuous Medla59

simulated inviscid, irrotational flow. While solutions starting , (1992. long. - dimensional ol model of th o
from initial cones collapse well under Keller—Miksis scaling, ;Am;f :{5;] ?D?;yiz 'g‘;gfgg% numerical model of the capillary in-
no quantitative collapse is found for initial shapes that camezy_ zhang and 0. A. Basaran, “An experimental study of dynamics of drop

from his computations. formation,” Phys. Fluids?, 1184(1995.

Phys. Fluids, Vol. 9, No. 6, June 1997 Brenner et al. 1589

Downloaded-04-Dec-2001-t0-128.135.164.25.~-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



33H. C. Lee, “Drop formation in a liquid jet,” IBM J. Res. Dev8, 364 L. Ting and J. B. Keller, “Slender jets and thin sheets with surface ten-

(1974. sion,” SIAM J. Appl. Math.50, 153(1990.
%D. B. Bogy, “Drop formation in a circular liquid jet,” Annu. Rev. Fluid 4%y 3. Chen and P. H. Steen, “Dynamics of inviscid capillary breakup:
35Mech. 11, 207(1979. _ _ o _ Collapse and pinchoff of a film bridge,” to appear in J. Fluid Mech.

A. E. Green, “On the non-linear behavior of fluid jets,” Int. J. Eng. Sci. 41y yan Saarloos, “Front propagation into unstable states: Marginal stabil-

14, 49 (1976.

363, E. Gechtel, C. D. Carlson, and M. G. Forest, “Recovery of the Rayleigh Ity as a dynamical mechanism for velocity selection,” Phys. Re7A

capillary instability from slender 1-d inviscid and viscous models,” Phys. 42211 (1989' . .
Fluids 7, 2956(1995. T. W. Shield, D. B. Bogy, and F. E. Talke, “A numerical comparison of
37R. M. S. M. Schulkes, “The evolution and bifurcation of a pendant drop,” ©ne dimensional fluid jet models applied to drop-on-demand printing,” J.
J. Fluid Mech.278 83 (1994. Comput. Phys67, 327(1986.

3T Y. Hou, J. S. Lowengrub, and M. J. Shelley, “The long time motion of *3J. B. Keller, A. King, and L. Ting, “Blob formation,” Phys. Fluid®, 226
vortex sheets with surface tension,” submitted to Phys. Fluids. (1995.

1590 Phys. Fluids, Vol. 9, No. 6, June 1997 Brenner et al.

Downloaded-04-Dec-2001-t0-128.135.164.25.~-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



