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Abstract

Themerging of two fluid drops is one of the fundamental topological transi-
tions occurring in free surface flow. Its description has many applications, for
example, in the chemical industry (emulsions, sprays, etc.), in natural flows
driving our climate, and for the sintering ofmaterials. After the reconnection
of two drops, strongly localized surface tension forces drive a singular flow,
characterized by a connecting liquid bridge that grows according to scal-
ing laws. We review theory, experiment, and simulation of the coalescence
of two spherical drops for different parameters and in the presence of an
outer fluid.We then generalize to other geometries, such as drops spreading
on a substrate and in Hele–Shaw flow, and we discuss other types of mass
transport, apart from viscous flow. Our focus is on times immediately after
reconnection and on the limit of initially undeformed drops at rest relative
to one another.
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1. INTRODUCTION AND HISTORICAL PERSPECTIVE

The coalescence of liquid drops, or other volumes of liquid, is the other fundamental process,
complementary to breakup, that takes place in free surface flow (Eggers 1997, Tryggvason et al.
2011, Popinet 2018, Anthony et al. 2023). It is near such singularities where new structures, such
as drops, are born and where rapid motion takes place, which imprints its characteristics on the
dynamics. The neighborhood of the places of topological transitions is therefore of special phys-
ical and technological interest and is often characterized by a simplifying self-similar structure.
This makes the transitions amenable to analytical mathematical treatment, which is unusual for
highly complex and nonlinear free surface flows.Clearly, coalescence processes are of fundamental
importance in industrial applications (Kamp et al. 2017), for example, in the physics of emulsions
(Chesters 1991), for oil recovery (Kavehpour 2015), for inkjet printing (Lohse 2022), for the col-
lision rates in flows containing fluid particles (Liao & Lucas 2010), and for the sintering process
(Rahaman 2010), in which a uniform material is created through the merging of individual par-
ticles. Models for coalescence have also been applied in biology, rationalizing the merging of cell
nucleoli as well as clumps of cells (Pokluda et al. 1997, Flenner et al. 2012, Caragine et al. 2018,
Grosser et al. 2021).

Curiously, the driver in both breakup and coalescence is surface tension. In breakup, a suffi-
ciently extended fluid column releases surface energy by reducing its radial extent,which then goes
to zero in finite time (Eggers & Villermaux 2008, Eggers & Fontelos 2015, Anthony et al. 2023),
but merging of spheres also leads to a reduction of surface area. Once two drops are reconnected
by a very small liquid bridge, surface tension will thus induce a very rapid coalescence motion.

The breakup process involves vanishing length scales and timescales, well separated from those
describing smooth motion, leading to universal scaling exponents and self-similar surface profiles,
independent of initial conditions and even fluid parameters; thus in breakup the geometry is gen-
erated self-consistently and the singularity is encountered during the final stages of breakup. By
contrast, in coalescence the motion starts in the singular regime and the geometry is imposed by
the initial condition.Figure 1 provides an overview of typical coalescence geometries: In contrast
to breakup, the resulting coalescence dynamics is not universal, but strongly depends on the im-
posed geometry, e.g., by confinement of the drops (Ryu et al. 2023). Additional complexity comes
from the fact that the outer (dispersed) phase also plays a major role in coalescence, even if its
viscosity is very small. The reason is that the outer fluid is confined to a very small gap between
the two drops, and lubrication effects come into play.

Coalescence has until recently been considered on a large-scale and qualitative level only
(Kamp et al. 2017), the earliest work being directed toward the conditions under which coales-
cence takes place in the first instance (for example, Reynolds 1900). Charles &Mason (1960b) and
Thoroddsen & Takehara (2000) have produced photographic sequences of the coalescence of a
drop with a bath, which leads to a cascade of coalescence events. The earliest systematic efforts to
understand the dynamics of coalescence quantitatively, from experimental (Kuczynski 1949), the-
oretical (Frenkel 1945, Kuczynski 1949, Hopper 1991), and numerical (Nichols & Mullins 1965)
perspectives, are related to the (viscous) sintering problem. Other surface tension–driven trans-
port mechanisms, which dominate at temperatures at which the drops are solid, have also been
considered widely (Rahaman 2010). The reason for the relative neglect of the initial coalescence
process is the tremendous speed of its motion,whichmakes experimental (Thoroddsen et al. 2008)
and numerical (Sprittles & Shikhmurzaev 2014b,Anthony et al. 2023) approaches very demanding
(see the sidebar titled Numerical Methods). The very small width of the gap between two spher-
ical drops, in addition, obscures imaging of the liquid bridge and requires very high numerical
resolution.
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Spherical or cylindrical (two-dimensional) coalescence 

Geometrically similar coalescence

c   Conical drops d   Drops on a substrate e   Liquid lenses

Other geometries or transport mechanisms

b   Bubbles

a   Drops, drop and bath

f   Hele–Shaw g   Viscoelastic coalescence h   Diffusive coalescence

R h(z)z

r

w
r0

η, ρ

θ θ

D

θ

ηo, ρo

Figure 1

The dynamics of coalescence is highly dependent on the geometry of the drops at the moment of contact.
Spherical/cylindrical coalescence involves (a) two drops or a drop merging with a bath or (b) bubbles that are
spherical/cylindrical upon the moment of contact. The geometry imposes a hierarchy of scales: drop radius
R, bridge radius r0, bridge width w = r20/R, and meniscus curvature 1 = r30/R

2. The droplet viscosity and
density are denoted η and ρ, respectively, while ηo and ρo refer to the viscosity and density of the
surrounding outer fluid. Geometrically similar coalescence refers to geometrically similar initial conditions,
where different directions are related by an angle. Examples are (c) conical drops, (d) drops on a substrate,
and (e) liquid lenses. The review further covers other geometries and non-Newtonian transport mechanisms,
such as ( f ) drops in a Hele–Shaw cell, (g) viscoelastic drops, where the schematic illustrates the stretching of
polymers inside the bridge, and (h) coalescence by diffusive transport. Figure adapted from illustrations by
Alexandros Oratis.

A complete picture of coalescence would require a full understanding of all stages of the process
that leads to the complete merging of drops:

1. Approach. Two drops first need to be brought together, which in general will be at a finite
velocity and impact parameter. For example, in a head-on collision of two spherical drops
of radius R traveling at relative speed U, the hypothetical geometrical overlap between the
two spheres yields a bridge radius of r0 = √

URt, which competes with the singular motion
engendered by surface tension and indicates a nonuniversal dependence of coalescence dy-
namics on the impact speed. At small distances, draining of the thin film between the two
drops will become important (Charles & Mason 1960a, Davis et al. 1989, Chan et al. 2011,
Kamp et al. 2017). As a result, drops will in general be deformed by lubrication forces, in
which rarefied gas effects become crucial (Li 2016, Sprittles 2024).

www.annualreviews.org • Coalescence Dynamics 63
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NUMERICAL METHODS

Until relatively recently, numerical methods have been unable to confirm many of the theoretical predictions for
coalescence. This is because they either (a) have captured the global shape of the droplets, without resolving small
scales of bridge growth (i.e., neglecting r0/R ≪ 1), or (b) have focused, or zoomed in, on the early growth, often in
specific flow regimes, without being able to simulate the entire drop’s motion (i.e., considering only r0/R ≪ 1).

For (a), numerical simulations are able to reproduce coalescing drop shapes and can often recover inviscid
(Menchaca-Rocha et al. 2001, Baroudi et al. 2014) and viscous (Baroudi et al. 2016) scalings—these are usually
based on interface capturing schemes (marker and cell, volume of fluid, lattice Boltzmann, etc.). For (b), boundary
integral methods have been deployed to compute both inviscid and viscous limits near the bridge front. Here, in
the inviscid case, the absence of an outer fluid causes the free surface to overturn and entrap toroidal bubbles (Oguz
& Prosperetti 1989, Duchemin et al. 2003). However, while some experimental evidence for entrapment has been
given (Aryafar & Kavehpour 2008, Fezzaa & Wang 2008), simulations suggest that tiny amounts of outer fluid can
prevent the formation of bubbles (Sprittles & Shikhmurzaev 2014b) and lead instead to the formation of pockets of
gas (also often referred to as bubbles) in front of the evolving neck, as also seen in the viscous case (Eggers et al. 1999).

Considering first a drop in a vacuum, in the viscous regime the smallest length scale is the bridge’s radius of
curvature ∼r30/R2. Then, for a millimeter-sized drop, when r0 ≈ 1 µm the ratio of the minimum length scale to drop
size∼(r0/R)3 is≈10−9.Then, for example, to capture this scale with 10 volume-of-fluid cells one needs to reach level
30 (as 1/230 ≈ 10−10), well beyond current capabilities. Consequently, most of the simulations probing the earliest
stages of coalescence have been performed by interface trackingmethods, specifically arbitrary Lagrangian–Eulerian
finite-element method (ALE-FEM) codes, which can be tailored to resolve singular dynamics [see the review by
Anthony et al. (2023)].

For ALE-FEM, one has to initiate the simulation with initial conditions on the velocity profile with a drop
shape that creates a finite-sized bridge r0,IC. The work with ALE-FEM codes began in a series of articles (Sprittles
& Shikhmurzaev 2012, 2014a,b) initially focused on forming interfaces, where the effect of the outer fluid is also
accounted for. More recently Anthony et al. (2020) reached even smaller scales in the single-fluid problem. To test
both theories proposed in the literature, as well as to compare to experiments, typically one needs r0,IC/R = 10−4

to give a few decades of reliable comparison (to satisfy r0 > 10r0,IC and r0/R ≪ 1). For a drop in gas, the smallest
scale is at most the bridge width, alleviating somewhat the requirements on the grid—for the example above we
would now only need level 23! Sprittles & Shikhmurzaev (2014b) and Anthony et al. (2020) established that the
initial conditions used in the computation can have a profound influence on the scalings observed, with either
underresolved computation or an offset in the initial conditions potentially leading to different (incorrect) scalings.

2. Reconnection. Microscopic interactions, through long-ranged intermolecular forces or
charge effects, lead to a joining of the two interfaces. This can lead to a jump to contact,
i.e., reconnection before the equilibrium shapes of the drops overlap (Quinn et al. 2013;
Chireux et al. 2018; Beaty & Lister 2022, 2023; Deblais et al. 2024); the effect of thermal
noise may also play a role (Perumanath et al. 2019).

3. Coalescence. This is the initial surface tension–driven merging of two fluid volumes, which
is the focus of this review. During this phase the dynamics is confined to the rapid motion
of a small liquid bridge connecting the two drops, the size of which is small compared to the
drops. As we shall see, in these earliest stages the centers of mass of the drops move little,
since the amount of fluid set in motion by the moving meniscus is small. On account of the
locality of the motion, the dynamics is characterized by scaling laws, but with significant
exceptions: There can be logarithmic corrections, and profiles do not necessarily exhibit
self-similar shapes.

64 Eggers • Sprittles • Snoeijer
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ℓν = η2/(γρ):
intrinsic length scale

tν = η3/(γ2ρ):
intrinsic timescale

Oh = η/
√

ρRγ:
Ohnesorge number,
which measures the
relative importance of
viscous to inertial
effects

τv = ηR/γ: viscous
timescale based on the
size of the drop

τi = √
ρR3/γ: inertial

timescale based on the
size of the drop

4. Merging. During the actual merging of the drops, the bulk of the original drops interpene-
trates to form a larger drop (Ashgriz & Poo 1990, Verdier 2001); this is the stage in which
most of the mass transfer takes place, and the subsequent dynamics can be quite complicated
(Planchette et al. 2012).

This review is dedicated to the coalescence regime that describes the early dynamics after
two drops have been joined at a point. Experimentally and numerically, this requires a careful
preparation of the initial conditions and very high spatial and temporal resolution. We focus on
Newtonian flow of liquid drops and bubbles for the geometries indicated in Figure 1a–f; we also
discuss other transportmechanisms that are relevant, e.g., for sintering, as sketched inFigure 1g,h.
We begin with a discussion of the timescales and length scales of Newtonian drop coalescence.

Drops of honey merge very slowly, the surface energy driving the motion being eaten up by
viscous friction, while, during the rapid coalescence dynamics of water drops, surface tension is
opposed only by inertia, the drops being nearly perfectly inviscid. Using the relevant material pa-
rameters forNewtonian drops (surface tension γ , dynamic viscosity η, density ρ), a unique intrinsic
length scale ℓν and a timescale tν can be constructed (Peregrine et al. 1990, Eggers 1993), at which
surface tension, viscosity, and inertia are balanced. The size of ℓν relative to the characteristic
lengths of the problem determines which regime, viscous or inertial, one is in.

For water, one obtains ℓν ≈ 14 nm,while for liquid honey ℓν reaches up to several meters.This
large variability in ℓν explains why such vastly different dynamics can be observed for millimeter-
sized drops. Indeed, introducing the drop sizeR as an extrinsic length scale, the dimensionless ratio
ℓν/R ≡ Oh2 involves the Ohnesorge number, which quantifies the relative importance of viscosity
to inertia on the global scale of the drop. The Ohnesorge number can also be written as a ratio of
timescales Oh = τ v/τ i, using the viscous time τ v and inertial time τ i. These represent the typical
times for the complete merging of two drops in the viscous and inertial regimes, respectively.

In this review we concentrate on the initial stages of coalescence, for which the minimum
bridge radius of the fluid neck connecting the two drops r0(t) ≪ R (see Figure 1). In such an
asymptotic limit, and barring logarithmic corrections, one expects the dynamics to have power-
law form (Eggers & Fontelos 2015), so the asymptotic regimes for the viscous and inertial bridge
dynamics are described, respectively in the viscous and inertial limits, by

r0
R

∼
(
t
τv

)α

,
r0
R

∼
(
t
τi

)β

. 1.

The exponents α and β are not universal but depend on the coalescence geometry, as we will
review in detail (cf. Tables 1 and 2). Special attention will be given to the crossover between
viscous and inertial coalescence.

2. SCALING LAWS: INFLUENCE OF DROP GEOMETRY

2.1. Local Versus Global Energy Balance

The coalescence of drops is driven by the tendency to reduce surface energy: Two drops have
a greater surface area than a single merged drop. Refining this argument, Frenkel (1945) put
forward the influential idea, both in engineering (Pokluda et al. 1997, Rahaman 2010) and in
biology (Flenner et al. 2012, Caragine et al. 2018, Grosser et al. 2021), that the rate of coalescence
is determined by a balance of the local rate of energy Ėγ freed, with the viscous dissipation inside
the drop. The dissipative power can be estimated by Pη ∼ ηϵ̇2V , where ϵ̇ is the typical rate of
deformation and V the characteristic volume that is sheared.

Focusing on the early stages of coalescence, Frenkel (1945) balances Ėγ = d
dt (πγ r20 ) with

dissipation taking place over the entire drop, i.e., V ∼ R3. This gives the incorrect prediction

www.annualreviews.org • Coalescence Dynamics 65
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Table 1 Scaling laws in the viscous regime: Ėγ = Pη

Capillary power
d
dt (γA)

Viscous
dissipation ηϵ̇2V

Bridge scaling
r0(t) Exponent α Section(s)

Spherical drops d
dt (γ r

2
0 ) η

(
ṙ0
r0

)2
r30

γ t
η
ln(R/r) 1 (log corr.) Sections 2.2 and 3.1

Spherical bubbles d
dt (γ r

2
0 ) η

(
ṙ0
r0

)2
r20w

(
t
τv

)1/2
R 1/2 Sections 2.2 and 3.3

Hele–Shaw (D ≪ r0) d
dt (γDr0 ) η

(
ṙ0
D

)2
r0Dw

(
t
τv

)1/4 √
RD 1/4 Section 2.4

Sessile drops (side view,
two-dimensional) d

dt (γL) ηϵ̇2A h0(t) α

Substrate (θ ≪ 1) d
dt (γ h0θ ) η

(
ḣ0/θ
h0

)2 h20
θ

γ t
η

θ4 1 Sections 2.3 and 4.1

Liquid pool (θ ≪ 1) d
dt (γ h0θ ) η

(
ḣ0
h0

)2 h20
θ

γ t
η

θ2 1 Sections 2.3 and 4.1

Cases for which the drop curvature matters invoke w = r20/R as the bridge width and τ v = ηR/γ as the viscous timescale.

r0 ∼ √
γRt/η for spherical drops: In reality the initial motion and thus dissipation are concentrated

in a small neck region, with the coalescing drops remaining static.
Yet in the spirit of Frenkel’s calculation, we use energy balance as a unifying approach to un-

derstand the initial coalescence dynamics in a broad class of coalescence geometries (Figure 1), by
choosing an appropriate local form of the control volume V . In the viscous regime, all the capillary
power (surface energy γA released per unit time; γL for a two-dimensional object) is dissipated
instantaneously by the viscous flow inside the bridge, with ϵ̇2 and V to be identified. In the inertial
regime, viscous dissipation is subdominant and all the released capillary energy is assumed to be
converted into kinetic energy of the moving fluid. Therefore, it is natural to invoke the energy
balance Eγ = Ekin ∼ ρv2V (rather than a power balance), where v is the typical velocity inside the
bridge. Different coalescence geometries lead to different expressions for Eγ ,Ekin, and Pη, and the

Table 2 Scaling laws in the inertial regime: Eγ = Ekin

Capillary energy
γ1A

Kinetic energy
ρv2V

Bridge scaling
r0(t)

Exponent
β Section(s)

Spherical drops γ r20 ρṙ20 r
2
0w

(
t
τi

)1/2
R

1/2 Sections 2.2 and 3.2

Spherical bubbles γ r20 ρṙ20 r
2
0w

(
t
τi

)1/2
R

1/2 Sections 2.2 and 3.3

Conical drops γ r20 ρṙ20r
3
0

(
γ t2
ρ

)1/3 2/3 Section 2.3

Sessile drops (side view,
two-dimensional) γ1L ρv2A h0(t) β

Substrate (θ < 90°) γ h0 ρḣ20h
2
0

(
γ t2
ρ

)1/3 2/3 Sections 2.3 and 4.2

Substrate (θ = 90°) γ h0 ρḣ20h0w
(
t
τi

)1/2
R 1/2 Section 4.2

Liquid pool (θ ≪ 1) γ h0θ ρ
(
ḣ0
θ

)2 h20
θ

(
γ t2θ4

ρ

)1/3 2/3 Sections 2.3 and 4.2

Cases for which the drop curvature matters invoke w = r20/R as the bridge width and τi =
√

ρR3/γ as the inertial timescale.
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resulting bridge dynamics r0(t) is not at all universal—as discussed in detail below (cf. Tables 1
and 2).

2.2. Spheres

We start by discussing the coalescence of spherical drops and bubbles.While we focus on the case
where the spheres have identical radii R, our scaling arguments are equally valid when drop sizes
are different or for a drop merging with a bath (Figure 1a).

2.2.1. Drops. Assuming a bridge radius r0, the characteristic width w of the bridge is much
smaller and scales as w = r20/R (Figure 1a), where in the case of unequally sized drops R would be
an effective radius. For a typical millimeter-sized drop, a bridge radius of a micrometer implies the
width to be as small as a nanometer. From the energetic point of view, the width of the bridge can
be neglected when computing the released capillary energy, Eγ ∼ γ r20 . The kinetic energy can be
estimated using the velocity v ∼ ṙ0, which is reached inside the bridge over a volume V ∼ r20w ∼
r40/R. The balance of surface and kinetic energies Eγ = ρv2V then gives the inertial scaling r0 ∼
(γR/ρ)1/4t1/2. The viscous scaling is more subtle. The dissipated power can be estimated using the
rate of deformation ϵ̇ ∼ ṙ0/r0. However, owing to the nonlocal nature of viscous flow, the region
over which dissipation occurs extends in all directions but is cut off at the scale of the two opposing
menisci to give V ∼ r30 . The balance Ėγ = ηϵ̇2V then gives r0 ∼ ηt/γ . This scaling argument does
not capture logarithmic corrections of the actual viscous coalescence dynamics, which goes like
r0 ∼ t ln t. Such corrections call for a more detailed approach beyond the simplified scaling analysis
(see Section 3.1). We note there is an equivalence of coalescence in two and three dimensions, in
the sense that cylinders and spheres exhibit the same scaling laws. This is because the width of the
gap is much smaller than r0, so the meniscus of coalescing spheres is almost straight on the scale
of w and thus corresponds to the straight menisci of coalescing cylinders.

2.2.2. Experiments. The first experiments to study the asymptotics of drop coalescence found
reasonable agreement with the expected scaling in the low-viscosity (Menchaca-Rocha et al. 2001,
Wu et al. 2004, Aarts et al. 2005) and high-viscosity (Yao et al. 2005) limits. Even if the temporal
resolution is high, themain obstacle is the ability to look into the gap of widthw between the drops.
As a result, the optical method is typically limited to measuring w down to a few micrometers,
which typically involves r0 down to 50 µm and thus r0/R ≳ 0.05, making it difficult to access the
asymptotic behavior as r0 → 0.

To improve on this, an electrical method was developed (Case & Nagel 2008, Paulsen 2013),
which relies on measuring the impedance of the entire coalescence cell, comparing it to an elec-
trostatic calculation based on two hemispheres joined by a neck of radius r0. The resulting values
of r0 were found to be insensitive to the modeling of the neck and agreed very well with opti-
cal measurements in the region of overlap. The electrical method allows for tracking r0 down to
timescales of 100 ns, so that r0 is measured down to a radius of 1 µm, an improvement of two
orders of magnitude.

Following Paulsen et al. (2011), Paulsen (2013), and Xia et al. (2019), in Figure 2 experimen-
tal data have been rescaled using the crossover radius rc = ROh and crossover time tc = τ vOh,
which provides a useful collapse of experimental data over a wide range of Oh. The experiments
agree with numerical data obtained from solving the Navier–Stokes equations, including the ef-
fect of the surrounding air (computed for Oh = 0.01 and 1). As is discussed in more detail in
Section 3.1, these numerical data confirm the presence of logarithmic corrections in the viscous
regime and fall within the experimental scatter, which is up to a factor of 3. Finally, the profiles
observed in numerical simulations are in excellent agreement with those obtained experimentally
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λ = η/ηo: viscosity
ratio relative to outer
atmosphere

ρ/ρo: density ratio,
neglected throughout
for droplet coalescence

3×

Oh = 0.0041 (1.9 mPa·s, electrical)
Optical

Optical

Optical

Oh = 0.014 (5.6 mPa·s, electrical)
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Oh = 0.35 (130 mPa·s, electrical)
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Oh = 0.0035 (1 mPa·s, optical)
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Oh = 0.01
Oh = 1
Equation 2

Oh >> 1 Oh ≈ 1
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Figure 2

Scaling plot of available data for spherical drop coalescence, comparing experimental data (symbols) and numerical calculations replotted
from Sprittles & Shikhmurzaev (2014b) (solid lines), taking ηair = 0.018 mPa·s (corresponding to λ = 2.2 × 104Oh for the water–
glycerol mixtures considered here). Data are scaled using the crossover scales rc = ROh and tc = τ vOh, which dictate the crossover
from viscous (t ≪ tc) to inertial dynamics (t ≫ tc). All experimental data are for water–glycerol drops in the presence of air.
Circles/triangle are from Paulsen (2013) for electrical/optical and squares are from Thoroddsen et al. (2005b). These datasets were
chosen as they use electrical triggers to define accurately the initial contact time. Data from Paulsen (2013) were chosen either as
optical and electrical data were available or to fill in empty regions of the plot. The dashed line represents the empirical crossover
function (Equation 2) that interpolates between the viscous and inertial regimes. The spread in the experimental data for r0 is up to a
factor of 3. (Inset) Experimentally recorded neck shapes (symbols) for two different viscosities in air at Oh = 370 and Oh = 0.62 from
Paulsen (2013), compared to numerical simulations at Oh = ∞ (Stokes) and Oh = 1, respectively. The numerical profiles from Sprittles
& Shikhmurzaev (2014b) have been selected for the minimum radius to match at the earliest instance.

in the optically accessible range (Figure 2, inset). We thus conclude that simulations, accounting
for the influence of the outer air, give a consistent description of the available experimental data.

2.2.3. Crossover. Dimensional analysis shows that the minimum bridge radius can be written
in the form r0 = R f̄ (t/τv, Oh, λ), where λ = η/ηo is the viscosity ratio; a small outer density (i.e.,
density ratio ρ/ρo ≫ 1) is found to have a vanishing effect on the dynamics. However, we see in
Section 3.3 that even a small outer viscosity (large λ) changes the structure of the narrow gap be-
tween the spheres significantly.Figure 2 shows that the dependence on the remaining parameters
τ v and Oh can be collapsed in a crossover function of a single variable (Paulsen et al. 2011),

r0
rc

= f (ξ ) =
[

1
Cvξ

+ 1
Ci

√
ξ

]−1

, with ξ = t/tc, 2.

that interpolates between the viscous scaling r0/R=Cvt/τ v and the inertial scaling r0/R = Ci
√
t/τi.

In the plot we used the empirical values Cv = 1 and Ci = 1.5. Even though the rescaling of data
is very good, we emphasize that the collapse in Figure 2 must be considered approximate: A
universal crossover function does not exist even for λ = ∞, owing to logarithmic corrections to
the viscous regime (see Section 3.1).

2.2.4. Bubbles. The geometry of bubble coalescence superficially resembles that of spherical
drops, but the liquid is now confined to a thin sheet on the exterior of the spheres. This sheet is
the only portion of the liquid to be set in motion, as the liquid film retracts under the influence
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Experiments: Paulsen et al. (2014)
Simulations: Munro et al. (2015)
Similarity solution: Munro et al. (2015)
Oho << 1 Asymptotics: Keller (1983)
Oho >> 1 Asymptotics: Munro et al. (2015)

Kvtθ2/tν

tθ2/tν

h0θ
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1.36 mPa·s
17.6 mPa·s
100 mPa·s
1,440 mPa·s
9,170 mPa·s
33,400 mPa·s
115,000 mPa·s
Equation 4

Figure 3

Two examples of viscous to inertial crossover. (a) For spherical bubbles, the bridge dynamics follows r0 ∼ t1/2 in both the viscous and
inertial regimes. The crossover shows up in the prefactor C(Oho) as defined by Equation 3, which is plotted as a function of Oho.
Experimental measurements (symbols) (Paulsen et al. 2014), numerical simulations (green line), similarity solutions (black line), a viscous
asymptote (yellow dashed line) (Munro et al. 2015), and an inertial asymptote (red dashed line) (Keller 1983) are shown. (b) Liquid lenses
present a case of geometrically similar coalescence: The side view bridge height h0 crosses over as time evolves, from h0 ∼ t (viscous) to
h0 ∼ t2/3 (inertial). Experiments (symbols), a crossover function (Equation 4; solid line), a viscous asymptote (dash-dotted line; Kv = 0.552),
and an inertial asymptote (dashed line; Ki = 0.781) (Hack et al. 2020) are shown.

of surface tension; the Ohnesorge number Oho below now refers to the viscosity ηo of the outer
fluid alone. Perhaps surprisingly, the bridge radius now scales as r0 ∼ t1/2 for both the viscous and
inertial regimes (Paulsen et al. 2014,Munro et al. 2015). The resulting dynamics can therefore be
captured by the form

r
R

= C(Oho )
(
t
τi

)1/2

, 3.

whereC(Oho) is a dimensionless prefactor that accounts for the slowing down upon increasing vis-
cosity. Experimental data (Paulsen et al. 2014) for the prefactor are plotted in Figure 3a, together
with model predictions obtained from direct simulations and from a similarity analysis based on
a thin film approximation (Munro et al. 2015).

The retraction of the film separating the bubbles comes with a release of capillary energy
Eγ ∼ γ r20 . At low viscosity, this retraction results in the sheet fluid of volume ∼ r20w ∼ r40/R be-
ing collected into a growing annular rim of volume V ∼ r40/R. The scaling laws for both Eγ and
Ekin therefore turn out identical to that of drop coalescence, and the same scaling r0 ∼ t1/2 ensues
in the inertial regime. In the specific case of Oho = 0, the original arguments of Taylor (1959)
and Culick (1960) can be turned into an exact result, invoking momentum conservation (Keller
1983). During coalescence, the fluid up to a certain radius r0 is collected inside a rim, which from
the shape z = r2/(2R) of the unperturbed sheet gives a volume Vrim = πr40/(2R). Since the force
on the rim exerted by the surface tension per unit length is 2γ , Newton’s equation now reads
4πγ r0 = d (Vrimṙ0 ) /dt, the solution of which yields Equation 3 with C = (32/3)1/4 ≈ 1.81. The
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Geometrically
similar coalescence:
coalescence with
geometrically similar
initial conditions
exhibits bridge growth
that is independent of
global drop size; it
involves r0 ∼ t (viscous
flow) and r0 ∼ t2/3

(inertial flow)

same numerical value was found solving similarity equations based on this thin sheet approxi-
mation (Munro et al. 2015). The experimental value for the prefactor is slightly lower: C ≈ 1.4
(Paulsen et al. 2014). The mismatch has been attributed to the (optical) experiment not being
able to access the asymptotic regime (Anthony et al. 2017); this is consistent with the absence of
a visible rim in experiments (Oratis et al. 2023).

In the viscous regime, bubble coalescence is very different from drop coalescence, since now the
flow is confined to the liquid film between the spheres. The relevant volume in which dissipation
occurs is V ∼ r40/R (rather than r30 for drops), yielding bridge dynamics r0 ∼ t1/2 (rather than t ln t
for drops). Similarity analysis for the full range of Oho is possible, which in the viscous regime
reduces to C = 0.8909/

√
Oho (Munro et al. 2015), in line with the experimental trend.

2.3. Geometrically Similar Initial Conditions

Coalescence exponents are not universal but depend on the fluid geometry upon contact. How-
ever, some degree of universality is recovered in the special case of geometrically similar initial
conditions. This refers to geometries that are invariant under an isotropic rescaling of all spatial
coordinates. Prototypical examples are wedges (Miksis & Vanden-Broeck 1999, Keller et al. 2000,
Billingham&King 2005) and cones (Bartlett et al. 2015), for which scales in orthogonal directions
are related by an angle. For geometrically similar coalescence, the only relevant scale is the local
size of the bridge, and the global drop size R plays no role during the initial stages. Inspecting
Equation 1, we see the independence of R implies an exponent α = 1 for viscous coalescence and
β = 2/3 for inertial dynamics.Below,we report experiments that fall into this class of geometrically
similar coalescence.

2.3.1. Spherical drops with conical tips. Charged drops in a strong electric field can lose their
rounded shapes and develop conical tips, similar to Taylor cones (de la Mora 2007). When two
charged drops are in close vicinity, the geometry prior to coalescence is thus not necessarily given
by a rounded interface but can consist of cones with a well-defined cone angle θ (Figure 1c).
An interesting feature is that conical drops only merge for angles above a critical value θ c (Bird
et al. 2009). For smaller cone angles, a connecting bridge would actually pinch rather than merge.
Assuming inviscid dynamics, the critical angle θ c = 65.3° was determined from similarity solutions
(Bartlett et al. 2015), consistent with experiment.

Once coalescence occurs in the inertial regime, the minimum bridge radius evolves according
to r0 ∼ (γ /ρ)1/3t2/3, independently of the global size of the drop R (Bird et al. 2009). The inde-
pendence of the drop size is due to the geometrically similar conical shape: The height and the
width of the bridge are both proportional to r0, the two scales being related by the cone angle.
The exponent 2/3 follows on dimensional grounds. Likewise, if viscosity is dominant, dimensional
analysis without invoking R yields r ∼ γ t/η.

2.3.2. Sessile drops. In many circumstances drops are in contact with a substrate (condensa-
tion, rain on a windshield, spraying, printing, etc.), giving rise to slowly spreading or stationary
sessile drops. The geometry of such drops consists of a spherical cap [or a puddle, in case gravity
is important (de Gennes et al. 2004)], which makes a well-defined contact angle θ with the sub-
strate (see Figure 1d). Another case of sessile drops is droplets that are floating on a liquid pool
(see Figure 1e) (de Gennes et al. 2004, Burton & Taborek 2007). A prototypical example of these
so-called liquid lenses is the fatty drops floating in a bowl of soup. The geometry of a liquid lens
resembles that of a drop on a substrate but now consists of two spherical caps: one cap above and
one cap below the surface of the liquid pool.
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In contrast to spherical drops, the geometry of sessile drops does not exhibit axisymmetry.
Despite the intricate geometry, when viewed from the side the problem resembles that of two
wedges of fluid, of angle θ , which are gently brought into contact (cf. inset of Figure 3b, also
for the definition of the bridge height h0). As for conical drops, such wedges fall in the class of
geometrically similar coalescence, for which the drop size has no effect on the initial dynamics of
the bridge height. Hence, one obtains the bridge height h0 ∼ t in the viscous regime (Narhe et al.
2008, Hernandez-Sanchez et al. 2012, Hack et al. 2020, Klopp & Eremin 2020, Klopp et al. 2020,
Kaneelil et al. 2022, Scheel et al. 2023), while the inertial limit gives h0 ∼ t2/3 (Eddi et al. 2013,
Sui et al. 2013, Hack et al. 2020), both for sessile drops and for liquid lenses. Figure 3b shows
experimental data for liquid lenses, crossing over from the viscous to the inertial asymptotes. The
data are accurately described by an empirical crossover function (Hack et al. 2020),

h0
ℓν

= f (ξ ) =
[

1
Kvξ

+ 1
Kiξ 2/3

]−1

, with ξ = θ2t/tν, 4.

with prefactors Kv = 0.552 and Ki = 0.781, computed from similarity analysis of the thin sheet
equations. The crossover only involves intrinsic scales ℓν and tν, reflecting the absence of any
external scale for geometrically similar coalescence (in contrast to Equation 2). Importantly, the
dependence of h0(t) on the contact angle θ is different for drops on a substrate and drops on a
pool, owing to the different boundary conditions. The scalings in Tables 1 and 2 are obtained
by a refined version of the analysis presented in Section 4, where we do full justice to the three-
dimensional aspects of sessile drop coalescence.

2.4. Other Cases

We proceed by briefly discussing coalescence in Hele–Shaw flows and for non-Newtonian fluids.

2.4.1. Drops in Hele–Shaw flow. Hele–Shaw flow consists of a viscous fluid confined be-
tween two closely spaced parallel plates (spacing D) (cf. Figure 1f ). During drop coalescence in a
Hele–Shaw cell, there is a short initial regime where the bridge radius r0 ≪ D, in which case the
confinement does not affect the viscous (linear) bridge scaling. However, quickly one approaches
a new regime in which r0 ≫ D, so that the flow becomes quasi-two-dimensional (Yokota &
Okumura 2011). In this regime, the released capillary energy becomes Eγ ∼ γDr0. One finds
that the shear rate between the plates ϵ̇ ∼ ṙ0/D, while the relevant volume V ∼ r0Dw. The power
balance then gives r0 ∼ t1/4, as observed experimentally.

2.4.2. Non-Newtonian fluids. As illustrated in Figure 1g, the Laplace pressure jump is en-
hanced in polymeric drops due to strong polymer stretching inside the bridge, where deformation
rates are large compared to the polymer relaxation time. As a result, coalescing water-based
polymeric drops exhibit bridge curvatures that are much larger than those of pure water drops
(Bouillant et al. 2022, Dekker et al. 2022). Yet the bridge dynamic r0(t) was found to be iden-
tical to that of pure water drops (Dekker et al. 2022) and bubbles (Oratis et al. 2023): Polymer
stretching remains initially confined to a small subregion of the bridge, which, even at a relatively
high polymer concentration, makes the influence of polymer stress on the flow too weak to alter
the inertial scaling r0(t) ∼ t1/2. A polymer-induced slowing down is observed only at slightly later
times, with a smaller effective exponent reported for a variety of polymer solutions (Varma et al.
2020). For sessile drops at high concentrations (beyond the dilute regime), such slowing down
was observed already for early times (Varma et al. 2021, 2022; Dekker et al. 2022). Other studies
involving complex fluids considered how yield stress leads to arrested drop merging (Kern et al.
2022), the effect of shear thinning on the tip structure for bubble coalescence (Kamat et al. 2020),
and the coalescence of thin liquid crystal domains (Delabre & Cazabat 2010, Klopp et al. 2024).
Shear-thinning sessile drops (Chen et al. 2022) are discussed below.
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nf: flow index of a
power-law fluid
(Newtonian, nf = 1;
shear thinning, nf < 1)

2.5. Different Transport Mechanisms: A General Scaling Law for Coalescence

Early on, Herring (1950) had proposed a unifying framework to understand sintering by various
mechanisms for (noninertial) material transport, depending on the material and the temperature.
For example, at lower temperatures the bulk material becomes solid, and atoms can no longer
move in it. Instead, transport is dominated by loosely bound atoms moving around the surface,
driven by surface tension (cf. Figure 1h). As a result, the timescale and coalescence exponents are
very different from those for viscous flow.Without going into the detailed physics of various pos-
sible transport mechanisms, the coalescence dynamics can be deduced from dimensional analysis.
For example, in the case of viscous flow, transport is driven by surface tension γ and damped by
viscosity η, thus involving a characteristic velocity γ /η and a timescale τ v = Rη/γ . Another ex-
ample, in mean curvature flow (covered below), is the normal velocity ∼Aκ , where κ is the mean
curvature of the interface; such flows thus involve a transport coefficient [A] = m2/s, and the asso-
ciated timescale becomes τ = R2/A. Generalizing to different modes of (overdamped) transport,
the dynamics involves a transport coefficient [A] = mn/s, which naturally gives a timescale τ n =
Rn/A. Power-law fluids driven by surface tension also fall in this class, with n = 1/nf.

Applied to coalescence, scaling laws for the initial stages are of the form

r0
R

∼
(
t
τn

)α

, with τn = Rn

A
. 5.

To find α, we assume the filling of the narrow gap between two spheres is controlled by the single
length scale w = r20/R (Herring 1950) (cf. Figure 4a). Appealing to the asymptotic equivalence
between two- and three-dimensional coalescence, the volume flux of material j, which per unit
length of the meniscus has dimensions [ j] = m/s, will be of the form j∼ Aw1−n. The gap between
the spheres has a (two-dimensional) volume V ∼ r0w ∼ r30/R, which is thus filled according to
V̇ ∼ jw ∼ Aw2−n. Solving for r0(t), one finds the exponent

α = 1
2n− 1

. 6.

This new scaling law reproduces the usually accepted exponents for coalescence (Kuczynski 1949,
Kingery 1960, Eggers et al. 1999). Note that in the viscous case n = 1 the coalescence exponent

Flux
j ~ w1–n

a b c

w
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0
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Figure 4

Coalescence beyond viscous transport. (a) The gap of width w = r20/R between two spheres is filled with matter at flux j ∼ w1−n.
Different kinds of transport mechanisms exhibit a different exponent n. (b,c) Mean curvature flow: The flux is proportional to the
curvature, j ∼ 1/w (n = 2). (b) Snapshot during the merging of two 3He crystals, which evolves according to mean curvature flow
(Ishiguro et al. 2004). (c) Cube r30 of the bridge radius (normalized by the mean curvature κ0 of the initial drops) versus time for
different temperatures above (red, blue, and yellow) and below (green) the minimum of the melting curve. The linear trend implies
r0 ∼ t1/3, in line with Equation 6 (Ishiguro et al. 2004). Panel b adapted with permission from Ishiguro et al. (2004); copyright 2004
American Physical Society.
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α = 1 is often reported wrongly as 1/2, which can be traced back to the incorrect argument of
Frenkel (1945), alluded to in Section 2.1.

2.5.1. Mean curvature flow (n = 2). Mean curvature flow can be realized by the surface of
He3 crystals close to Tmin = 0.32 K, where the latent heat vanishes and melting and freezing are
controlled by small differences in chemical potential (Maris 2003, Ishiguro et al. 2004). As a result,
the normal velocity is proportional to the mean curvature.Figure 4b,c provides an example of the
merging of 3He crystals (Ishiguro et al. 2004), which follows r0 ∼ t1/3, in line with Equation 6 for
n = 2. The prefactor can be determined analytically from a detailed calculation of the meniscus
shape (Maris 2003).

2.5.2. Sintering by volumetric (n = 3) or surface (n = 4) diffusion. The sintering of metal
spheres can be driven by the volumetric diffusion of atoms across the bulk or by the diffusion
of atoms along the surface (Kuczynski 1949, Mullins 1959, Eggers 1998). The former involves a
transport coefficient with n = 3, while the latter has n = 4. According to Equation 6, this gives
r0 ∼ t1/5 and r0 ∼ t1/7, respectively, both of which have been observed experimentally (Kuczynski
1949). A closer analysis of merging by surface diffusion, however, reveals that a more subtle argu-
ment is needed to derive the growth law (Eggers 1998). The underlying dynamical equation gives
rise to surface oscillations: The two sides of the gap between the spheres touch to enclose a void,
at which point the dynamics of r0 restarts. The mechanism of void formation has been used to
produce empty structures in silicon (Mizushima et al. 2000).

2.5.3. Other initial conditions. For geometrically similar initial conditions (merging cones)
the coalescence dynamics cannot depend on R, which readily implies α = 1/n, as is also observed
for the blunting of conical tips (Ishiguro et al. 2007, Lamstaes & Eggers 2013). Sessile drop coa-
lescence of power-law fluids is indeed reported to give α = 1/n = nf (Chen et al. 2022). Another
curious case is encountered for the merging of viscous blisters confined between a solid and an
elastic sheet; the ratio of the bending modulus and viscosity leads to transport with n = 3 (Sæter
et al. 2024). Unlike cones or spheres, the initial gap between the blisters is very wide and the
dynamics is not governed by a single scale; the growth of the bridge between the blisters is not
algebraic but exponential (Sæter et al. 2024).

3. SPHERICAL DROPS

By far the most detailed studies of coalescence have been devoted to the idealized situation of
two spherical drops of Newtonian fluid, starting to coalesce at a point of negligible size. Here, the
dynamics associated with the approach and reconnection stages is often neglected (see the sidebar
titled Practical Challenges, First Contact, and Microscopic Effects). The dynamics is controlled
by Oh as a single parameter. We consider the limits of vanishing inertia Oh = ∞ and of inviscid
flow Oh = 0 and assess the effect of an outer fluid.

3.1. Very Viscous Drops, Oh = ∞
Let us assume that the shape of the meniscus is described by a similarity solution (Paulsen 2013,
Eggers & Fontelos 2015) whose height is set by r0 and whose width is set by the width w = r20/R
of the spacing between two spheres at that scale:

r = r0R̄ (ξ ) , with ξ = zR
r20

. 7.

Here R̄(ξ ) is a similarity function to be determined below, which depends on the details of the
viscous flow. To make Equation 7 consistent with the shape r ≈ √

2Rz of two spherical drops that,
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vη = γ/η: capillary
velocity, obtained from
the balance of surface
tension and viscosity

PRACTICAL CHALLENGES, FIRST CONTACT, AND MICROSCOPIC EFFECTS

Optical imaging of the initial stages of coalescence is challenging due to the cusp-like gap into which the exper-
imentalist must search for the first signs that merging has occurred. Furthermore, even when electrical methods
are used to signify contact (e.g., Thoroddsen et al. 2005a, Paulsen et al. 2011), the mechanism by which contact is
established, and thus the initial shapes of the two drops, is unclear.

Throughout the literature, it has been speculated that the intervening air could provide a lubricating cush-
ion that can deform the drops and even prevent contact at the center. To analyze this effect, experiments by
Paulsen (2013) vary U over seven orders of magnitude, going as low as 17 nm/s, and show that for approach speeds
<3 × 10−4 m/s, the crossover between viscous and inertial regimes remains unchanged. Recent simulations based
on the framework of Sprittles (2024) that includes both gas kinetic effects and van der Waals (vdW) forces between
the approaching interfaces support this result (see Deblais et al. 2024). In particular, simulations show a vdW-driven
jump to contact that initiates merging of millimeter-sized drops at a distance dmin of tens of nanometers, in agree-
ment with experiment (Chireux et al. 2018). The much larger value of dmin ∼ 160 nm suggested by Paulsen (2013)
is likely due to the strong electric field used there. Clearly, the relation between the approach stage and subsequent
coalescence is worthy of further experimental and theoretical analysis; the dynamics of the jump to contact has been
investigated theoretically in more detail by Beaty & Lister (2022, 2023).

On top of these effects, one has thermal fluctuations that for typical fluids drive nanoscale interfacial waves that
deform the spherical shape of the drops. For larger drops these can act as initial perturbations that initiate the
jump-to-contact instability, while for smaller nanodrops they can drive off-center contacts (see Perumanath et al.
2019), introducing stochasticity into the coalescence process.

away from the bridge region, have not yet been deformed, we have to require that R̄ ≈ √
2ξ for

large ξ . Even without knowing R̄ explicitly, we can conclude that the inverse curvature at the tip,
and therefore its smallest length scale 1, is r−1

zz = r30/(R
2R̄′′ ) ∼ r30/R

2 (Eggers et al. 1999).
To find the time dependence of r0 (Eggers et al. 1999), one can argue that the flow is driven

by surface tension forces, which are concentrated in the highly curved neck region, which forms
an azimuthal ring of radius r0 and produces a force of strength 2γ er per unit length. On a scale
smaller than r0, the curvature of the ring can be neglected, and themotion is equivalent to the two-
dimensional dynamics of two merging cylinders, driven by two opposite point forces of strength
2γ . This confirms that the leading order asymptotics of two- and three-dimensional coalescence
are equivalent, as has been confirmed by numerical simulation (Sprittles & Shikhmurzaev 2014b).

The forcing is opposed by viscous forces, which at a distance r0 from a two-dimensional point
force F= 2γ [known as a Stokeslet (Pozrikidis 1992)] produce a velocity F ln r0/(4πη).The forcing
is spread out over the local scale 1 ∼ r30/R

2 of the tip and cut off over the scale r0 of the ring, with
the opposite side pulling in the opposite direction. This produces a radial velocity of the meniscus
ṙ0 ≈ vη/(2π ) ln(r0/1), where vη = γ /η is the capillary velocity. Integrating this velocity, one finds
to logarithmically leading order

ṙ0 ≈ (vη/π ) ln(R/r0 ), r0(t ) ≈ −vηt
π

ln
(
vηt/R

)
. 8.

Given the asymptotic equivalence (for early times) of two- and three-dimensional coalescence,
an alternative approach is to analyze the exact solution (Hopper 1990, Richardson 1992) of two
merging cylinders in Stokes flow.Hopper (1990) found a complex mapping between the cylinders’
cross section and the unit disk in terms of a rational function with time-dependent coefficients,
describing the entire evolution from reconnection to a single merged circle. Analysis of this map-
ping yields the minimum radius r0/R = √

2(1 − a2 )/
√
1 + a4, where the parameter a is shown to
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Figure 5

(a) Bridge radius r0(t) for three-dimensional spherical drop coalescence at Oh = 1 and Oh = ∞ at early times, compared to Equation 9
(Hopper 1990). (b) Without inertia (Stokes flow) the drop profile near the meniscus collapses for early times onto the similarity solution
in Equation 10 (black dashed line). For Oh = 1 and early times, collapse is on a different similarity solution, which asymptotes to spheres
still at their original position (red dotted line). Figure replotted from simulation data presented by Sprittles & Shikhmurzaev (2014b).

vary with time as

t
τv

= π√
2

∫ 1

a2

dp
p
√
1 + p2K (p)

, 9.

and where K(p) is the complete elliptic integral of the first kind (Gradshteyn & Ryzhik 2014). This
result matches with Equation 8 at early times, to logarithmically leading order, and agrees very well
with numerical simulations of merging spheres and cylinders in the Stokes limit in the absence of
an outer atmosphere (Sprittles & Shikhmurzaev 2014b), as is shown in Figure 5a. Expanding the
entire mapping for a ≈ 1, one finds the similarity profile corresponding to the similarity solution
in Equation 7 to be (Paulsen 2013)

R̄(ξ ) =
√
1
2

+
√
4ξ 2 + 1

4
, 10.

consistent with R̄ ≈ √
2ξ for large arguments (see also Howison et al. 1997 and Gillow 1998 for a

derivation using the slenderness of the cusp). Remarkably, Equation 10 is identical to the similarity
solutions describing Moore’s instability of vortex sheets (de la Hoz et al. 2008, Eggers & Fontelos
2015) and other nonlocal transport equations (Eggers & Fontelos 2019).

Initial experimental and numerical results for r0(t) led Paulsen et al. (2012) to hypothesize
the existence of a new inertially limited viscous (ILV) regime, in which inertia would intervene
to make r0(t) linear at early times, regardless of the drop viscosity. Theoretically, this was moti-
vated by the fact that inertialess coalescence (i.e., Oh = ∞) described by Hopper’s (1990) solution
drives a uniform translation of both drops by a distance r20/(4R) = w/4.This effect is illustrated in
Figure 5b, showing a horizontal shift of the similarity solution (Equation 10), relative to the origi-
nal drop position. Estimating drop inertia at finite Oh, it follows that at early times surface tension
is not sufficiently strong to move an entire drop by a distance w/4; thus, outside the viscous bridge
region, the drop remains at its original position.

However, as seen in Figure 5a, in reality r0 remains virtually unaffected by drop translation
at early times, in agreement with all recent numerical data (Sprittles & Shikhmurzaev 2014b,
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Anthony et al. 2023); as a result, r0 agrees with Hopper’s solution, which includes logarithmic
corrections (Eggers et al. 1999). In other words, the arguments leading to Equation 8 still hold
at early times, even at finite Oh: The bridge region remains purely viscous, and there is no ILV
regime for r0(t). However, a closer inspection of the self-similar meniscus region (Figure 5b)
shows that a finite Oh value (Oh = 1) does change the similarity function R̄(ξ ) (cf. Equation 10).
Numerical solutions for Oh = 1 collapse onto this new similarity profile, which now has to fit
onto the unshifted drop and thus differs from its Oh = ∞ version in Equation 10.

3.2. Inviscid Drops, Oh = 0

In the viscously dominated case, the dynamics was taking place over a wide range of scales, between
r30/R

2 and r0. In the inviscid case, by contrast, the dynamics is local; the only available length scale
is the neck width w = r20/R. Invoking this length in the energy balance gives the inviscid scaling
(see Section 2.2),

r0 = Ci

(
γR
ρ

)1/4

t1/2. 11.

This result has been obtained by a variety of essentially equivalent arguments (Eggers et al. 1999,
Duchemin et al. 2003, Biance et al. 2004) and has been proven robust in many experiments (Wu
et al. 2004, Case & Nagel 2008, Paulsen 2013, Chireux et al. 2021) and simulations (Sprittles &
Shikhmurzaev 2014a,b).The constant is found to be close to Ci ≈ 1.5 in experiment (see Figure 2)
and simulations (Sprittles & Shikhmurzaev 2014a), with a slightly higher value of Ci ≈ 1.62 given
by Paulsen (2013). Once again, the local dynamics is controlled by the large curvature near the
tip, much larger than the azimuthal curvature of the liquid bridge connecting the drops (Eggers
et al. 1999). Thus coalescence in two and three dimensions leads to the same bridge dynamics in
the limit of small r0. A first correction to Equation 11 can be derived by including the azimuthal
curvature (Sprittles & Shikhmurzaev 2014a, Xia et al. 2019), which significantly improves the
agreement with numerical simulations for r0/R ≳ 0.1.

To analytically determine the prefactor Ci of the inviscid scaling, one might be tempted to
resort to a similarity analysis as for the viscous case. Experimental profiles indeed exhibit a rea-
sonable collapse (Dekker et al. 2022) when scaling radial and axial scales with r0 andw, respectively,
in line with Equation 7. However, such a local similarity description only applies in an approxi-
mate sense. Duchemin et al. (2003) theoretically analyzed inviscid coalescence assuming potential
flow and ignoring the effect of the outer atmosphere. However, the bridge dynamics led to cap-
illary waves fed by a growing bulbous end, and eventually reconnection (Duchemin et al. 2003,
Billingham & King 2005), after a time τ0

√
ρw3/γ , the meniscus having traveled a distance 10w;

the dimensionless constants τ 0 = 10 and 10 = 7.6 were determined numerically. Averaging over
many reconnection events (Eggers 1998), one obtains Ci = √

210/τ0 ≈ √
20/7.6 ≈ 1.62. At the

discrete reconnection events, the profile is described approximately by Equation 7; however, this
is not an example of discrete self-similarity (Eggers & Fontelos 2015), since reconnection times
do not scale geometrically. The reconnections can be suppressed by including the outer fluid
into the description (Sprittles & Shikhmurzaev 2014b). As is discussed below, the presence of an
outer fluid also introduces a new length scale in the problem, breaking the similarity form in
Equation 7.

3.3. An Outer Fluid

Unavoidably, physical systems involve the presence of an outer fluid,most often a gas atmosphere.
This introduces the density ratio ρ/ρo and most importantly the viscosity ratio λ = η/ηo between
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(a) Numerical simulation of spherical coalescence for Stokes flow, including the effect of the outer fluid (Oh = ∞, viscosity ratio λ =
104). We observe the appearance and growth of an air pocket that is consistent with all outer fluid accumulating at the meniscus; the
inset shows the bridge velocity for λ = 104 and 106 according to Equation 12 (including the effect of the outer fluid) and Equation 8
(neglecting the outer fluid). This is replotted from simulation data presented by Sprittles & Shikhmurzaev (2014b). (b) Phase map for
spherical coalescence in an outer fluid. We defined an effective Ohnesorge number for the inner and outer fluids, using the effective
density ρeff = ρ + ρo; hence, Ohi/o,eff = ηi/o/

√
γRρeff. The transition in the gray zone is not universal (here sketched for Ohi,eff = 1).

Panel b modeled after concepts presented in Paulsen et al. (2014).

the inner and outer fluids as additional parameters. Even the smallest external viscosity will lead
to a significant change in behavior (Eggers et al. 1999), as the external fluid is trapped inside a
very narrow channel between the two drops, from which it cannot escape. As a result, the outer
fluid accumulates inside the meniscus region, forming a toroidal bubble (see Figure 6a), as has
been observed experimentally for drop coalescence in oil (Aryafar & Kavehpour 2008), in air
(Deblais et al. 2024), and in numerical simulations (Sprittles & Shikhmurzaev 2014b).The volume
of the toroidal bubble follows from integrating over the width of the gap z = r2/R from 0 to r0,
which gives Vb = πr40/(2R). This leads to a toroidal bubble of radius rb ∼ r3/20 /R1/2, as confirmed
in Figure 6a.

3.3.1. Viscous drops. For drops of high viscosity (large Oh) without outer fluid, the dynam-
ics involves the meniscus curvature 1 ∼ r30/R

2 as the smallest scale. Due to the presence of the
toroidal bubble, the smallest scale is replaced by the bubble size rb ∼ r3/20 /R1/2, changing the
dynamics to (Eggers et al. 1999)

ṙ0 ≈ vη

2π
ln(r0/rb ) ≈ vη

4π
ln(R/r0 ), r0(t ) ≈ −vηt

4π
ln
(
vηt/R

)
. 12.

Compared to Equation 8, this induces a slower dynamics, by a factor of 4, compared to vis-
cous coalescence without an outer fluid. The scaling in Equation 12 is confirmed numerically
(Figure 6a, inset), which shows the speed of retraction ṙ0 as a function of r0. Even for a very large
viscosity ratio λ (small external velocity), Equation 12 is observed at early times. The dynamics
crosses over to Equation 8 at the later stages, during which the outer fluid escapes and the toroidal
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bubble disappears. The range of r0 values for which a toroidal bubble is sustained has been esti-
mated as r0/R ≲ λ−2/3 by comparing the pressure inside the drop to the lubrication pressure due
to the emptying of the bubble inside the drop (Eggers et al. 1999). An analysis of numerical data
by Sprittles & Shikhmurzaev (2014b) indicates r0/R ≲ λ−1/3; the origin of this discrepancy is not
known.

The above pertains to small external viscosity (λ ≫ 1). The regime where the outer fluid has
comparable or large viscosity (λ ≲ 1) has been investigated by Paulsen et al. (2014), for which the
toroidal bubble gives way to a smoothened profile (Eggers et al. 1999, Munro et al. 2015). Using
the results in Table 1 for the idealized cases λ = ∞ (drops) and λ = 0 (bubbles), we estimate
the relative importance of dissipation in the outer/inner fluid, Po/Pi ∼ λ−1 r0/R. Hence, crossover
between dominance of viscous effects of the inner fluid and dominance of the outer fluid takes
place at r0/R ∼ λ = η/ηo (Paulsen et al. 2014).

3.3.2. Inviscid drops. Turning to the case of inertially dominated drops (small Oh), for small
r0/R the lubrication pressure in the air pocket strongly inhibits the reconnection of the two sides
of the drops. In addition, even if the drop viscosity is small, the resisting factor is now the fluid
inertia, which has to be accelerated by the stress exerted by the gas. One can theoretically ex-
ploit the presence of the toroidal bubble, as the configuration is identical to the film retraction
encountered during inviscid bubble coalescence described in Section 2.2.4, the only difference
being the effective mass αρVb in the exterior of the toroidal bubble; α is an added mass coefficient
(Batchelor 1967), which is unity in the case of a circular bubble in two dimensions. The modified
result from Keller (1983) then reads Ci = (32/(3α))1/4 ≈ 1.8, with the inertial timescale τ i based
on the density of the drop. In the two-fluid case, the total mass set into motion reads ρeffV , with
effective density ρeff ≈ ρ + ρo. We therefore propose r0/R ∼ (t/τ i,eff)1/2 as a good approximation
for inviscid two-fluid coalescence, with an effective inertial time τ i,eff based on ρeff.

3.3.3. Regime map. The relative roles of inner/outer fluids are summarized in a regime map
(Figure 6b). Since the effect of inertia is captured by ρeff, we define effective Ohnesorge numbers
for the inner/outer fluid as Ohi/o,eff = ηi/o/

√
γRρeff. The vertical axis depends on material proper-

ties, while the horizontal axis involves the size of the bridge r0, which grows in time. Irrespective of
Oho,eff, the asymptotics for r0 → 0 is always viscous with r0 ∼ t ln t. Initially, the outer fluid collects
in an air pocket and the dynamics follows Equation 12.At small outer viscosity (Oho,eff ≲ 1), the air
escapes over time and the dynamics gives way to the Hopper solution in Equation 8 (Figure 6a)
before crossing over into the inertial regime with r0 ∼ t1/2. At large outer viscosity (Oho,eff ≳ 1),
the outer fluid never escapes the pocket and the inertial regime is not reached. Instead, one crosses
directly from Equation 12 to the viscous bubble regime r0 ∼ t1/2.

4. SESSILE DROPS

Sessile drops on a solid substrate or floating on another liquid take the shape of spherical caps. On
a (super-)hydrophobic surface, the droplet contact angle θ > 90° and the initial contact occurs at
a finite height above the substrate; the initial dynamics of the small liquid bridge is not influenced
by the substrate and follows that of spherical drops (Keij et al. 2013), and the released kinetic en-
ergy can even lead to droplet jumping (Charles & Mason 1960b, Thoroddsen & Takehara 2000,
Boreyko & Chen 2009). Here we are interested in cases with θ ≤ 90°, such that the drop coa-
lescence starts at the substrate. The bridge takes the form of a saddle, described by a function
h(x, y, t) (Figure 7). The bridge height h0(t) and bridge width y0(t) are defined, respectively, from
the side view and top view perspectives.
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Figure 7

Three-dimensional coalescence of drops on a substrate. (a) Schematic representing the top view defining
bridge width y0. (b) Schematic representing the side view defining bridge height h0 and the contact angle θ ;
the front view shows the cross section of the liquid bridge with the bridge angle θb and bridge radius of
curvature a. Lower panels show experimental profiles of the bridge region during the coalescence of viscous
silicone oil drops on a glass substrate (Kaneelil et al. 2022). (c) Collapse of bridge profiles according to the
similarity form in Equation 14, with constant a. (d) Collapse of data for profiles taken at three different y
locations, at multiple times, and multiple volumes V, compared to the theoretical prediction H(1) (solid line)
obtained from Equation 15. Panels c and d adapted with permission from Kaneelil et al. (2022);
copyright 2022 American Physical Society.

As argued in Section 2.3, the bridge height h0(t) falls in the class of geometrically similar coales-
cence, which comes with universal exponents α = 1 (viscous) and α = 2/3 (inertial). However, the
geometric relation between top view and side view coalescence of spherical cap-shaped drops is not
universal. Following the classification of singularities proposed by Dallaston et al. (2021), we char-
acterize various cases of sessile drop coalescence as point-like (y0 ∼ h0) or as quasi-one-dimensional
(y0 ≫ h0).

4.1. Viscous Drops with Small Contact Angles: θ ≪ 1

The most detailed understanding of sessile drop coalescence has been achieved in the limit of
viscous drops of small contact angles. Below we discuss this limiting case for drops on a substrate
and for liquid lenses.

4.1.1. Viscous drops on a substrate. Figure 7c shows experimental profiles of the three-
dimensional shape of the bridge for two highly viscous silicone oil drops merging on a glass
substrate (Kaneelil et al. 2022). At t = 0, coalescence starts at the plane of symmetry y = 0,
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according to a linear growth h(x = 0, y = 0, t) a h0(t) = vt. Away from the centerline (y ̸= 0), the
coalescence starts slightly later, at a time t0(y). Since the bridge is shallow, the cross section in the
(yz)-plane is assumed parabolic (Figure 7c), so that vt0 = y2/2a. Here a is the radius of curvature
of the bridge, which relates to the bridge width as y0 = (2ah0)1/2. In experiments for viscous drops,
a was found constant in time and set by the global drop size (Kaneelil et al. 2022). Hence, one
obtains the bridge width y0 ∼ t1/2 (Ristenpart et al. 2006, Narhe et al. 2008), which during the
initial stages of coalescence is much larger than the height h0 ∼ t. As such, viscous sessile drop
coalescence falls in the class of quasi-one-dimensional singularities.

The evolution of h(x, y, t) can be described by two similarity variables: ξ = xθ/vt in the plane
of symmetry and ζ = y/

√
avt in the transversal direction. Figure 7c shows that this rescaling,

combined with h/vt, indeed offers a collapse of experimental profiles taken at different times.
With this scaling, a solution of the thin film equation (Eggers & Fontelos 2015),

∂h
∂t

+ γ

3η
∇ · (h3∇∇2h

) = 0, 13.

can be written as (Kaneelil et al. 2022)

h(x, y, t ) = vtH (ξ , ζ ) ≡ vt
(
1 − 1

2
ζ 2
)
H (1)

(
ξ

1 − 1
2 ζ

2

)
. 14.

This indeed has the form of a quasi-one-dimensional singularity (Dallaston et al. 2021), whereH(1)

is a solution of the one-dimensional similarity equation (Hernandez-Sanchez et al. 2012, Kaneelil
et al. 2022):

H − ξH ′ + 1
A
(
H3H ′′′)′ = 0. 15.

The delay time of coalescence in the transverse direction (ζ ̸= 0) is accounted for by the factors
1 − 1

2 ζ
2. To mimic the experimental scaling in Figure 7, the similarity function was normalized

as H(1)(0) = 1. This comes at the expense of a constant A a 3v/(vηθ
4) in Equation 15, which

could in fact be scaled out. Its value A = 0.819 is determined from the boundary conditions
H′(∞) = 1 and H′′(∞) = 0 to guarantee matching to the initial drop shape. The solution thus
gives the coalescence velocity v = 0.273vηθ

4 (Hernandez-Sanchez et al. 2012), while the shape
H(1) in Figure 7d is seen to agree very well with experimental data for various cuts at constant y,
rescaled according to Equation 14.

4.1.2. Viscous lenses. Coalescence of drops floating on a liquid pool has been studied us-
ing top and side view experiments (Burton & Taborek 2007, Hack et al. 2020) and via lattice
Boltzmann simulations (Scheel et al. 2023). Another experimental realization consists of viscous
lenses confined in very thin freestanding liquid crystal films (Klopp & Eremin 2020, Klopp et al.
2020), which allows for imaging of the droplet profiles by interference (cf. inset Figure 8a). In
the viscous regime, all studies consistently find that h0 ∼ y0 ∼ t. The linear scaling of h0 in the vis-
cous regime is presented in Figure 3b. The fact that y0 also grows linearly implies that the bridge
angle θb ≈ h0/y0 remains approximately constant during coalescence, as shown from the experi-
mental data in Figure 8a (Klopp et al. 2020). Viscous lens coalescence therefore corresponds to
a two-dimensional singularity of the point-like type (Dallaston et al. 2021), for which the bridge
grows with the same scaling in all directions. This is an important difference with respect to the
coalescence of a viscous drop on a substrate. Another difference is seen in the growth velocity for
the bridge height: v = 0.55vηθ

2 for liquid lenses (Hack et al. 2020) instead of v = 0.273vηθ
4 for

drops on a substrate (Hernandez-Sanchez et al. 2012).
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Figure 8

(a) Height-to-width ratio h0/y0 during coalescence for viscous lenses, as measured in a freestanding smectic film (Klopp et al. 2020).
The ratio remains approximately constant, suggesting a constant bridge angle θb. Top left inset provided by Christoph Klopp and Ralf
Stannarius. (b) Three cases of water drops with identical dynamics for r0(t): coalescence of hemispherical sessile drops (θ = 90°, green)
(Eddi et al. 2013), spreading drops (blue) (Winkels et al. 2012), and spherical coalescence (red) (Paulsen et al. 2012). The dashed line
represents r0/R = 1.2(t/τ i)1/2.

4.2. Contact Line Motion

The coalescence of sessile drops gives rise to contact line motion. Below we highlight some salient
features associated with this motion and the resulting contact angles.

4.2.1. Top view versus side view. The transverse motion during the coalescence of vis-
cous drops on a solid substrate involves rapidly advancing contact lines. At x = 0, according to
Equation 14, the contact line position is y0(t) ≈ (2avt)1/2 (with constant bridge curvature a): The
contact line advances at a speed that is formally diverging for t → 0. At the same time, the ap-
parent bridge contact angle θb, defined in Figure 7c, is θb ≈ √

2vt/a, which goes to zero at initial
time t = 0. This is a remarkable feature, given that contact lines rapidly advancing over solid sur-
faces usually lead to an enhancement of the apparent contact angle (compared to the equilibrium
angle θ ).

We have already seen for viscous drops that the relation between the top view and side view is
not universal (constant a on a substrate versus constant θb for lenses). The inertial regime probed
by water drops on a substrate (θ ≈ 70°) shows both h0 and y0 to scale with the inertial exponent
2/3, with θb ≈ θ (Eddi et al. 2013), yet corresponding numerical simulations report an exponent
1/2 for y0 (Sui et al. 2013). Likewise, experiments (Burton & Taborek 2007) and numerics (Scheel
et al. 2023) for inertial lenses report y0 ∼ t1/2 (while we recall h0 ∼ t2/3). In general, it is not
understoodwhen sessile drop coalescence exhibits y0 ∼ h0 (point-like singularity) or y0 ≫ h0 (quasi-
one-dimensional singularity).

4.2.2. Hemispherical drops: θ = 90°. A special case arises when θ = 90°, for which the droplets
form perfect hemispheres.Figure 8b shows experimental results for water drops (inertial regime),
showing h0(t)∼ t1/2 (Eddi et al. 2013).Within experimental uncertainty, the data are indistinguish-
able from r0(t) obtained for spherical coalescence for which no substrate is present. Hence, the
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substrate has no measurable effect on the bridge growth.We recall that water drops on a substrate
that meet with θ < 90° exhibit an initial dynamics h0 ∼ t2/3. For angles close to (but smaller than)
θ = 90°, the 2/3 scaling is observed only over a very short time, quickly crossing over to the 1/2
regime (Sui et al. 2013).

4.2.3. The spreading-coalescence analogy. When a droplet is deposited very gently on a
substrate, with negligible impact velocity, a very rapid contact line motion ensues (see inset in
Figure 8). Interestingly, the dynamics of the contact radius for the initial spreading of water drops
follows r0 ∼ t1/2 (Biance et al. 2004, Carlson et al. 2011, Winkels et al. 2012, Stapelbroek et al.
2014), and an analogy with inertial coalescence was already suggested by Biance et al. (2004).
Figure 8b directly compares the liquid bridge dynamics r0(t) for initial spreading and for the coa-
lescence of water drops: The datasets nearly fall on top of one another, the best fits giving prefac-
tors Ci = 1.5 (coalescence) and Ci = 1.2 (spreading). Once again, the presence of a moving contact
line has little effect on the initial dynamics of the bridge, even upon changing the wettability (from
θ = 0° to 115°) or various types of substrate inhomogeneities (Winkels et al. 2012, Stapelbroek
et al. 2014). The spreading-coalescence analogy is also observed for water drops with (voltage-
induced) conical tips: Both spreading and coalescence exhibit r0 ∼ t2/3 (Courbin et al. 2009).

FUTURE ISSUES

1. The hydrodynamics of just two drops colliding at finite speed is quite complicated, and
many aspects remain unexplored.

2. Our findings in Section 3.1 suggest the existence of a second similarity solution describ-
ing viscous coalescence, but at finite Oh. The mechanism by which inertia comes into
play remains to be discovered.

3. The observation or prediction of entrapped toroidal bubbles during the coalescence of
low-viscosity drops remains an intriguing possibility. While conventional lubrication in
the gas prevents their formation, it is possible that in narrow gaps kinetic effects reduce
the apparent viscosity of the gas and conspire with van der Waals forces to entrap a trail
of bubbles.

4. How the outer fluid combines with microscopic effects to provide an initial condition
for coalescence deserves further attention. How are the approach, reconnection, and
coalescence phases related?

5. For the coalescence of sessile drops, the relation between the bridge height and the
bridge width is not universal and not understood.

6. What is the effect of contact line motion on coalescence on a substrate? Why does the
contact line hardly influence the initial stages of spreading?
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