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Abstract

Steady tip streaming in the vanishing flow rate limit has been evi-
denced both experimentally and numerically in the literature. However,
local conical Stokes flow solutions supporting these results at vanishing
small scales around the emitting tip have remained elusive. This work
presents approximate local conical solutions in liquid-liquid flow focusing
and tip streaming, in general, as the limit of a macroscopic vanishing is-
sued flow rate. This provides mathematical foundations for the existence
of an asymptotically vanishing scale at the tip of an intermediate conical
flow geometry with angle α. For a sufficiently small inner-to-outer liquid
viscosity ratio λ, these solutions exhibit a universal power-law relationship
between this ratio and the cone angle as α = kλ1/2, where the prefactor
k, of the order of unity, depends on the geometric details of the macro-
scopic flow. This confirms the existing proposals that anticipate the use
of flow focusing and tip streaming technologies for tight control of micro-
scopic scales, down to those where diffuse liquid-liquid interfaces become
manifested.

1 Introduction

Tight control of minute microscopic scales, even close to the molecular scale, can
be considered the key to many of today’s dominant technologies, ranging from
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pharmaceuticals, biochemistry or analytical chemistry to microelectronics. The
fundamental step in realizing such control always involves the ability to focus a
stream of matter, be it a liquid, a gas or a photon beam, into a tightly controlled
jet on a minute scale. When dealing with a liquid, focusing a differentiated
stream of matter can be accomplished by several procedures involving a diversity
of driving forces [21], which in almost all cases act against the surface tension
of the liquid.

In general, the action of focusing is ultimately associated with a conical ge-
ometry, where mass flow or energy reach a singularity at its apex. In exceptional
occasions, a purely conical self-similar solution of the balance equations is dis-
covered. Indeed, [2] criticized the much earlier proposal by [31] where the latter
suggested that pointed-apex bubbles in a straining flow could develop a conical
tip if the phenomenon is observed with sufficient resolution. That possibility
was experimentally entertained by [25]. However, Buckmaster showed a fact
already noted by [32]: That a conical flow around a capillary hollow cone is
not possible fundamentally because the mechanical balance of surface stresses
(normal and tangential stresses should vanish on the bubble surface) is impos-
sible at a perfect conical shape. [8] obtained the complete nonconical solution
to the problem of the strained bubble tip shape with finite curvature apex in
the absence of emission, and showed it could be matched to Taylor’s theory as
an outer solution.

[30] also discovered a conical, self-similar electrostatic solution (i.e. motion-
less) that served as the keystone of the so-called Taylor cone-jet electrospray
mode, one of the major breakthroughs in analytical chemistry and biochemistry
[10]. This procedure uses electrohydrodynamic forces to focus a liquid stream
into a steady capillary jet whose diameter can be precisely determined on a scale
ranging from millimeter to molecular [33, 4, 11, 15]. However, the singularity
at the tip of the cone in Taylor’s solution, which leads to perfectly balanced
but unbounded local forces, prevents its strictly self-similar nature in practice,
since the system eventually leads to the emission of matter from the tip of the
cone. Nevertheless, Taylor’s solution remains a solid keystone to the ultimate
understanding of the physical phenomenon. In fact, the key to achieving a per-
fect balance of normal surface stresses is to counteract the surface tension with
a normal electric stress. Taking advantage of this fact, other conical solutions
have been reported assuming Stokes flow and the action of electrohydrodynamic
forces [23, 16].

Inspired by electrosprays, [12] discovered a way to focus a liquid stream by a
converging gas flow in the form of a tiny capillary jet. The method, called Flow
Focusing (FF), was later extended to produce the same focusing effect on a gas
stream exerted by a converging liquid flow [14]. The most popular configuration
of FF was proposed by [1], leading to a fundamental and long-lasting microfluidic
paradigm. In reality, FF is part of a substantial class of fluid dynamics problems
where a given volume of liquid is subject to stretching under a generalized
extensional or focusing flow [28, 34, 5, 29, 13, 9, 8]. However, the analytical
counterpart in FF or the steady tip streaming to the self-similar Taylor conical
solution in electrospray remains unknown, despite a number of experimental
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and numerical evidences pointing to this possibility [34, 29, 13, 7, 6, 24]. This
solution would resolve a long-standing debate and the theoretical conundrum of
whether simple mechanical means can effectively control flow scales down to the
molecular level, leading to extreme mixing and emerging macroscopic properties
such as those of ultra-fine emulsions (e.g. mayonnaise) despite the finite surface
tension between the two phases involved.

We address a fundamental question in fluid physics arising from hydrody-
namic focusing in the limit of a vanishing emitted flow rate: the existence of
a local, self-similar conical flow structure that bridges two inherently distinct
scales—a macroscopic domain influenced by non-conical boundary conditions,
such as externally imposed extensional viscous flows, and a significantly smaller
scale near the apex of the tapering meniscus. To resolve this paradox, two
complementary analytical approaches are pursued. The first employs general
solutions of the Stokes equations in spherical coordinates, supplemented by nu-
merical analysis to accurately capture the non-conical region that connects the
self-similar cone to the emerging jet. In contrast, the second approach utilizes
slender-body lubrication theory, analytically capturing the complete cone-jet
structure autonomously, provided the cone angle is sufficiently small. Remark-
ably, the lubrication theory yields a universal self-similar flow structure governed
by a single dimensionless parameter directly linked to the extensional strength
of the outer focusing fluid. Both solutions exhibit the same scaling dependency
of the cone angle on the square root of the viscosity ratio between the inner
and outer fluids. Ultimately, these two methods yield results in nearly perfect
mutual agreement, with their correspondence becoming exact as the cone angle
approaches zero. By analytically and numerically resolving this conundrum, we
establish the feasibility of a locally conical, infinitely thinning flow geometry
with virtually negligible emission, serving as an ideal intermediate asymptotic
structure for forming perfectly cylindrical jets at scales approaching the ultimate
continuum limit.

The first method is structured in two steps:
1- We first introduce an analytical conical flow solution of the Stokes equa-

tions as a local solution of flow focusing or tip-streaming in the limit of a zero
emitted flow. This solution is a modification of Buckmaster’s solution [2] to
include the internal recirculating flow of the liquid inside the cone, which allows
an exact balance of viscous stresses with surface tension at the cone surface
with semi-angle α for a wide range of viscosity ratios between the two fluids
and cone angles. Interestingly, this solution yields a constant velocity (indepen-
dent of the spherical radial coordinate) at the cone surface. However, it requires
the axis to be avoided in the external region due to the logarithmic singularity
appearing there. Physically, the local flow around the axis emanating from the
cone is akin to an artificial infinitely thin ”drawing line” in the external flow
moving the liquid from the tip of the cone to keep the flow running in the axial
direction. The appearance of the logarithmic singularity at the axis in the flow
outside the cone shows that a line of point forces or stokeslets at the axis must
exist to keep the outer flow going in the form of an infinite conical configuration
with a constant surface speed. However, this solution establishes the basis for
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a subsequent valid approximation: It is the extra degree of freedom at the axis
that actually allows the existence of a conical solution, as illustrated next.

2- The above conical solution is superimposed with another inner solution
having a content flux to account for the emitted flow rate and is approximately
matched, at large distances from the cone-jet transition, with a solution consid-
ering an asymptotically cylindrical infinite jet with a diameter proportional to
the local cone-jet transition scale. The complete solution at the tip of the cone
naturally entails the breakdown of the conical self-similar solution at the local
scale of the cone-jet transition, which is commensurable with the diameter of
the emitted jet. At this scale, the conical shape tapers into a universal funnel
shape that eventually turns into a perfectly cylindrical jet. This transition flow
region is finally solved numerically for a given viscosity ratio and cone angle by
Herrada’s method [19] using the proposed analytical solution as the asymptotic
boundary condition.

The second method expands about the local flow strength at the axis of
an arbitrary external flow governed by the axisymmetric Stokes equations. Us-
ing the slender-body approximation, a general formulation based on lubrication
theory is developed, which is reduced to a similarity solution describing the
cone-jet structure. This similarity solution is characterized by a single dimen-
sionless parameter that represents the scaled external flow velocity at the point
on the axis where the conical region transitions into a cylindrical thread. This
governing parameter, defined as proportional to the square root of the viscosity
ratio between the inner and outer fluids, exhibits a threshold below which sta-
ble conical solutions exist. This result is consistent with the predictions from
the first approach: Remarkably, this threshold corresponds to the cone angle
that maximizes the interface velocity for the analytically exact solution, in the
limit of vanishing viscosity ratio. Beyond this threshold, the solutions become
non-conical (cusp-like), and their analysis lies outside the scope of the present
paper.

2 Problem formulation

The problem we address assumes the presence of a stretching or converging flow
in an incompressible and viscous fluid. This flow can be produced by any pro-
cedure or geometry of the contours, for example, a liquid stream forced through
an orifice such as the FF configuration, or an extensional axisymmetric flow.
Within this flow pattern, another fluid immiscible with the first and forming a
capillary meniscus (for example, a droplet [27]) is subjected to stretching by the
viscous action of the first fluid to the point where, at the apex of the stretched
meniscus, a capillary jet of characteristic diameter much smaller than any other
scale existing in the system is emitted.

In this study, we will address the physical question of whether a self-similar
flow pattern and a conical meniscus shape is possible as the intermediate geom-
etry of the tip of the meniscus in question. If such a flow solution exists, it is
the perfect candidate to serve as the source of a perfectly cylindrical jet with a
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Figure 1: The global flow focusing geometry, the intermediate scale where a
conical geometry emerges, and the idealized local conical flow considered in this
work. The local spherical coordinates R and θ are indicated, as well as domains
0 (meniscus tip) and 1 (focusing stream). Also, the cylindrical coordinates {r, z}
and the meniscus profile radius h(z) used in the slender body theory are indi-
cated. µ0 and µ1 are the viscosities of the inner and outer incompressible fluids,
respectively. The macroscopic scale R0 is imposed by any external boundary
condition (here, a feeding tube), while the intermediate scale l denotes any
length scale below R0 around the tip where a local conical meniscus can be
observed. Q is the ejected flow rate of the inner fluid. RJ is the jet radius once
the quasi-cylindrical geometry is developed.

diameter that can be as small as the scale of the continuum hypothesis [13].

2.1 Physical scales and intermediate range

We seek the existence of an intermediate scale range in which a solution dom-
inated by viscosity (see Figure 1) can realistically be represented by a stable
conical flow. That geometry would exist between the large global macroscopic
scale and the very small scale in the region that smoothly links the conical shape
with the formally infinitesimal emitted capillary jet. In that intermediate scale
range, if the solution sought existed, the flow would be self-similar. Globally
stable solutions would be supported in the parametric region where this flow
would be locally stable.
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2.1.1 Is there a conical intermediate region?: Local, intermediate,
and viscous scales

The existence of a conical local and universal solution can be demonstrated if we
use a numerical solution with realistic boundary conditions at the macroscopic
scale and find such an intermediate region of invariance. In the recent work
of [24], the authors use a configuration with an external extensional flow that
does not support asymptotic conical solutions for large scales. Despite this, an
intermediate but very large scale compared to the size of the cone-jet region can
always be found when the issued flow rate vanishes.

Thus, we seek the conical flow solution of an incompressible viscous fluid
stream with viscosity µ0 focused by a second immiscible and axially symmetric
viscous co-flow with viscosity µ1, in the limit of a vanishing ejected flow rate
Q in units of a macroscopic length scale. In this limit, we hypothesize the
existence of an intermediate conical shape of characteristic size l near the tip of
the focused meniscus, from which a steady ejection takes place as a very thin
capillary jet.

If the driving outer flow is locally inertia-less in the vicinity of the cone-jet
transition, the local scale of the issued stream (capillary jet) can be described
by a characteristic length l0, exclusively determined by the three local dominant
parameters, namely the viscosity of the outer driving fluid µ1, the ejected volume
flow rate Q and the surface tension γ between the outer and inner fluids, as

l0 =
(

µ1Q
γ

)1/2
. Thus, at this scale the problem will be written in units of length,

mass and time as l0, m0 =
µ3
1Q
γ2 and t0 =

(
µ3
1Q
γ3

)1/2
, respectively. These length,

mass and time scales would vanish when the flow rate vanishes as measured
with units of the conical intermediate scale l ≫ l0. In contrast, interestingly,

the scales of pressure p0 =
(

γ3

µ1Q

)1/2
and density ρ0 =

(
µ3
1

γQ

)1/2
diverge as

Q−1/2, since the pressure should balance the surface tension, i.e. (γ/l0) p
−1
0 = 1,

and the density ratio ρ/ρ0 ≪ 1 indicates an inertia-less flow. In contrast, in
units of l0, m0 and t0, the values of the surface tension and flow rate are γ = 1
and Q = 1, respectively, and the values of the inner and outer viscosities are
λ0 = µ0/µ1 and λ1 = 1. From now on, whenever λ appears without sub-index,
it means λ0.

To ensure that viscous focusing forces dominate over surface tension, the

characteristic length scale l0 must satisfy l0 ≪ lµ =
µ2
1

ρ1γ
, where ρ1 is the

density of the outer focusing fluid. Introducing the characteristic flow rate

Qµ =
(

µ3
1

ρ2
1γ

)1/2
, this condition implies that the nondimensional flow rate must

satisfy Q/Qµ ≡
(

ρ2
1Qγ

µ3
1

)1/2
≪ 1. Additionally, for a viscous-dominated conical

flow pattern to emerge, one must consider an intermediate length scale l, loosely
defined as any scale fulfilling l0 ≪ l ≪ lµ. Therefore, using the intermediate
scale l and the units of µ and γ, introducing the reference flow rate Ql = γl2/µ
one should also have Q≪ Ql ≪ Qµ, consistently with l0 ≪ l ≪ lµ.
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From a problem-solving point of view, the practical use of these length scales
and their corresponding units can be reduced to considering the value of the flow
rate as follows:

1- At the intermediate scale l and time tl = µl/γ units, the flow rate can be
given by the value q ≡ Q/Ql. From this scale, in the limit q → 0 there would
be no visible jet and the outer domain flow (1) must comply with regularity
conditions at the axis, which will be subsequently given in detail.

2- At the local scale, using l0 = (µ1Q/γ)
1/2

and t0 as the unit length and
time, respectively, one necessarily has Q = 1.

In summary, as long as one had l ≫ l0, one would have q ≪ 1, but if l
approaches l0, in the limit l = l0 one has Q = q = 1 (again, in units of l0 and
t0).

Next, we discuss the equations and boundary conditions of the problem in
spherical polar coordinates.

2.2 Conical Stokes flow and boundary conditions

In the inertia-less limit, we use the stream function Ψj(r, θ) for the Stokes flow
in the focused (j = 0) and focusing (j = 1) domains (these initial domains
can be extended subsequently). This function is determined by the well-known
differential equation [17, 20]:

E2(E2Ψj) = 0. (1)

We choose spherical coordinates {R, θ}, where the operator E2 obeys the ex-
pression

E2 ≡ ∂2

∂R2
+

sin θ

R2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (2)

The velocity field u = {uR, uθ} = { 1
R2 sin θ

∂Ψ
∂θ ,−

1
R sin θ

∂Ψ
∂R}, the components

of the stress tensor τ , τR,R = 2λj
∂uR

∂R , τR,θ = λj

(
R∂(uθ/R)

∂R + 1
R

∂uR

∂θ

)
, and

τθ,θ = 2λ
(
∂uθ

∂θ + uR
)
R−1 and the pressure p at each domain j satisfy the Stokes

equation ∇pj = ∇ · τ .
Singularities at the axes θ = 0 and θ = π/2 should be avoided in both the

inner and outer domains of the cone (j = 0 and 1, respectively), that is,

u
(0)
θ (R, θ = 0) = 0,

∂u
(0)
R

∂θ
(R, θ = 0) = 0, u

(1)
θ (R, θ = π) = 0,

∂u
(1)
R

∂θ
(R, θ = π) = 0

(3)
At the meniscus surface θ = θs(R), where the normal and tangential unit

vectors are expressed as

n = {−Rθ′s(R), 1}
(
1 +R2θ′s(R)

2
)−1/2

and
t = {1, R θ′s(R)}

(
1 +R2θ′s(R)

2
)−1/2

,
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respectively – the primes indicate derivatives with respect to the variable indi-
cated (R in this case)– the normal and tangential stress balance read:

p(1) − p(0) + n · (
(
τ (0) − τ (1)

)
· n) + κ(R) = 0, (4)

and
t ·
((

τ (0) − τ (1)
)
· n
)
= 0 (5)

where the curvature κ(R) in spherical coordinates is given in general by:

κ(R) =
cot(θs(R))−R (rθ′′s (R) + θ′s(R) (Rθ

′
s(R) (2Rθ

′
s(R)− cot(θs(R))) + 3))

R (R2θ′s(R)
2 + 1)

3/2
,

(6)

which is reduced to κ = cot(θs(R))
R for a conical shape.

The continuity of tangential velocities requires(
u(1) − u(0)

)
· t = 0. (7)

For a steady interface F (R, θ) ≡ θs(R) − θ = 0, the general requirement
∂F
∂t + u · ∇F = 0 demands:

u(0) · n = u(1) · n = 0. (8)

Recalling that we are using a generic length scale l, and µ1 and γ as the
units of viscosity and surface tension, for any value of R, the net flow rate is
given by

q =

∫ θs(R)

0

2πR2u
(0)
R sin(θ) dθ (9)

Alternatively, as anticipated, using the local scale l0 = (µ1Q/γ)
1/2

, the flow
rate is set to q = −1.

3 Proposed solutions

3.1 A first analytical conical exact solution

Analytical solutions of equation (1) in separate variables have been known long
ago. The solution part depending on the angular coordinate θ can be expressed
as combinations of four independent solutions to the fourth-order differential
equation derived from (1), which we express for reference in terms of the asso-
ciated Legendre functions as [2, 17, 20]:

Ψj = R3/2+βf (j)(x) ≡ R3/2+β(1− x2)1/2
(
A

(j)
1 (β)P 1

β+1/2(x)+

A
(j)
2 (β)P 1

β−3/2(x) + A
(j)
3 (β)Q1

β+1/2(x) +A
(j)
4 (β)Q1

β−3/2(x)
)
, (10)

where x = cos(θ), and P 1
ν (x) and Q

1
ν(x) are the associated Legendre functions.
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The assumed existence of the intermediate region does not automatically
suggests that we can set a perfectly conical flow at infinity, except in the case
of the limit q → 0. In this case, there are two independent parameters of the
problem: the viscosity ratio λ and the cone angle α.

Thus, reducing the problem to a perfectly conical self-similar flow with a
meniscus of semi-angle θs(R) = α, solution to equations (10)-(9) can be written
as a superposition of two similarity solutions [2, 17]:

Ψj = R2
(
Gj,1 +Gj,2 cos(θ) +Gj,3 cos

2(θ) +Gj,4 sin
2(θ) tanh−1(cos(θ))

)
+Aj,2 cos

3(θ) +Aj,1 cos(θ) +Aj,3 cos(θ)

(
cos(θ)− sin2(θ) log

(
tan

(
θ

2

)))
, (11)

The terms proportional to R2 (β = 1/2, coefficients Gj,i: the “stress solution”)
satisfy the stress conditions and those independent of R (β = −3/2, coefficients
Aj,i: the “flux solution”) provide the flow rate. In this first solution, the first
index of each set labels regions (0) and (1), the second the amplitude of the
linearly independent solutions; the fourth term in the solution independent of
R is a constant and then can be dropped. As a result, there are only three
coefficients Aj,i| 1, 2, 3. The boundary conditions lead to:

G0,1 = −
cos2 (α) cot

(
α
2

)
4 ((λ− 1) cos (α) + λ+ 1)

,

G0,2 =
sin (α) cot2

(
α
2

)
4 ((λ+ 1) sec (α) + λ− 1)

,

G0,3 = − (G0,1 +G0,2) , G0,4 = 0,

G1,1 = − λA−B

8 ((λ− 1) cos (α) + λ+ 1)
,

G1,2 = −
sin2

(
α
2

)
cos (α) tan

(
α
2

)
((λ− 1) cos (α) + λ)

2 ((λ− 1) cos (α) + λ+ 1)
,

G1,4 =
1

8
sin (2α) , G1,3 = − (G1,1 −G1,2) , (12)

being

A = sin (2α)
(
cos (α) + (cos (α) + 1) log

(
tan

(α
2

)))
B =

(
sin (α)− tan

(α
2

))(
cos (2α)− 2 sin2 (α) log

(
tan

(α
2

))
+ 1
)
.(13)

In the general case with an ejected flow rate q, one has

Aj,1 = −
3λj cos

2 (α) csc4
(
α
2

)
16π cos (α) + 8π

q, Aj,2 =
λj csc

4
(
α
2

)
16π cos (α) + 8π

q, Aj,3 = 0. (14)

for j = 0, 1. The coefficient Aj,3 is zero since the solution of the form

Aj,3 cos(θ)

(
cos(θ)− sin2(θ) log

(
tan

(
θ

2

)))
, (15)

9



0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

θ

u

1 5 10 50 100

0.0

0.2

0.4

0.6

0.8

1.0

R

p

Figure 2: (Left): The fluid velocities u
(j)
R (θ) (black curves) and u

(j)
θ (θ) (blue

curves) of the exact analytical solution (11)-(14), plotted as functions of θ. The
red curve represents the modulus of the velocity. Note the singular behavior as
θ → π (the region that would be occupied by the jet). (Right): The pressure
distributions P (0)(R) (black) and P (1)(R) (blue). Here, α = 0.15, λ = 0.01, and
q = 0.

which gives a strong singularity on the axis, should be excluded in both domains.
On the other hand, when R ≫ 1, both uR and uθ are independent of R, as
required, but they exhibit a logarithmic singularity as θ → π, i.e. the region
occupied by the jet. An illustrating plot of them as functions of θ for R → ∞
is given in figure 2.

This flow pattern raises the inner liquid pressure towards the apex: When
the inner-to-outer viscosity ratio is small, the momentum diffusion from the
outer converging flow is so strong that it compresses the inner flow at the tip.
In effect, for R ≫ 1, the corresponding expressions for the pressure in both
domains are given by:

pj = λj
2 (Gj,2 −Gj,4)

R
. (16)

This expression is positive for j = 0 and negative for j = 1, and becomes un-
bounded for R→ 0. Note that, in contrast with the fluid velocities, the pressure
is independent of θ. Figure 2(right) illustrates the pressure distributions in both
domains, which are inversely proportional to R to balance the surface tension
term.

For the given small viscosity ratio λ = 0.01 used in figure 2, the pressure
distribution is due to the intense diffusion of momentum into the inner flow from
the outer domain, so that while the outer flow loses pressure only modestly, the
inner flow gains it substantially. Their difference is balanced by the increase
in surface tension and normal viscous forces as R decreases. The increasing
overpressure towards the apex in the inner domain projects the on-axis stream
in the opposite direction to that of the interface towards the apex.
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Figure 3: The velocity of the interface (in the direction of the apex) according to
(17), as a function of α and λ. Iso-contours represent constant velocity values.
The blue dashed line is the value of α that maximizes the absolute value of the
interfacial velocity for a given viscosity ratio λ. Above this maximum absolute
velocity for a given λ, there is no solution, while below it, each velocity gives
two possible solutions and cone angles. In section 4 we show that the solutions
to the right of the blue curve should not be considered.

3.1.1 The interfacial velocity

From the solution (11)-(14), the velocity at the interface reads:

uR(α) = − sin (2α)

8 ((λ− 1) cos (α) + λ+ 1)
(17)

This velocity can be represented as a function of the cone angle α and the
viscosity ratio λ. It is given in figure 3. Note that the modulus of the outer
velocity is nearly constant everywhere in the outer domain, except at the axis.

For a given driving velocity and a given viscosity ratio λ, Figure 3 shows
that the cone angle may have two possible values, or no solution. There is one
value of α that maximizes the absolute value of the surface velocity for a given
λ, represented as a blue dashed line: It is the cone angle for which the transfer
of momentum to the inner fluid is maximized. This maximizing αm value is
given by the expression:

λ =
2 tan2

(
αm

2

) (
sin2 (αm) + cos (αm)

)
2 cos (αm) + cos (2αm)− 1

. (18)

For λ≪ 1, one has that (18) can be approximated as:

λ =
α2
m

4

(
1 +

13

6
α2
m

)
+O(λ6) =⇒ αm = 2λ1/2 +O(λ3/2), (19)
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which is exactly the same relationship αm = 2λ1/2 for the critical solution
(maximum strength of the external flow) found in section 4 using slender body
theory.

However, given the logarithmic singularity of the axial velocity on the outer
axis (θ = π), the analytic solution presented in this section (see Figure 2) does
not completely solve our problem. Nevertheless, the existence of this solution
suggests that such a conical flow configuration would be a good candidate as
a first approach, modified as necessary to satisfy the presence of an inertialess
thin jet in the vicinity of θ = π for small λ values. The modification could be
accomplished by forcing a regularization around the jet of the exact solution
(11)-(14) presented. This possibility will be explored next.

3.2 Cone-jet solution: an optimal approximate analytical
solution with a jet domain

To tackle regularization, we divide the space into four domains (see Figure 4):
1- The inner cone (domain (0)),
2- The outer flow to the cone (domain (1), now limited between the angles

α and χ),
3- The outer jet domain (2) (or the outer flow in the jet region, between the

angles χ and π −RJ/R, for RJ ≪ R), and
4- The inner jet domain (3).
In this part, we assume a non-zero flux (q ̸= 0). Thus, a jet will be present

and the self-similarity of the problem is lost in favor of a local solution of the
cone-jet flow geometry with a finite scale of the jet radius. By choosing q = 1,
we implicitly use l0 as the unit of length.

The analytical approach at the cone to solve domains (0) and (1), leading
to solution (11)-(14) by setting the boundary conditions at the cone surface, is
followed in the case of domains (2) and (3), which correspond to the jet problem.
Once both the cone and jet problems are independently solved, the remaining
unknowns to close the global problem can be solved by matching domains (1)
and (2).

Focusing now on the jet surface, given by θs(R) = π −RJ/R in the limit of
small RJ , Similarly to the cone domain we seek for solutions of the form:

ψj = cos3(θ)Aj,2 + cos(θ)Aj,1 +R2
(
cos2(θ)Gj,3 + cos(θ)Gj,2 +Gj,1

)
(20)

with j = 2, 3, which complies with regularity at the axis. The singular part of
the solution is dropped, i.e. Gj,4|j=2,3 = 0. The conditions on the jet surface

are identical to (4)-(8), except for the value of θs(R). To match the flow from
the cone side, i.e. condition (9), the flow rate condition in the jet domain for
any radial position R is now:

q =

∫ π

π−RJ/R

2πR sin(θ)u
(3)
R Rdθ = 1 (21)

since the flow is now positive in the R direction.

12



𝜒
𝛼

0

1

2
0

1

2
3

3

(a) (b) 𝜒𝜃௦ሺ𝑅ሻ

Figure 4: The four regions considered: 0 (inner cone), 1 (outer cone), 2 (outer
jet region) and 3 (inner jet). The angle χ separating regions 1 and 2 is where
the solutions should match. According to the procedure described, this angle
is a free parameter that determines the values of the cone angle α and the jet
radius RJ for a given viscosity ratio λ. It is related to the free parameter Ca
of the second solution procedure described in Section 4. (a) General schematics
for an arbitrary intermediate scale l. (b) The analytical solution at the local
scale lo (blue lines). The ultimate cone-jet transition is numerically resolved
(dashed line).

As stated previously, the values of A2,1 and A2,2 can be identical to those
obtained in the outside region of the cone, A1,1 and A1,2. This also guarantees
that the stress component τRR, given by

τRR =
4
(
cos(θ)

(
3A1,2 cos(θ)−R2G1,4

)
+A1,1

)
R3

(22)

is identical at both the cone and the jet regions, since no terms depending on
Gj,i appear in this expression. Moreover, to avoid tangential stresses τRθ on
the jet surface as R → ∞ (i.e., the jet velocity profile should be flat), one
should have Gj,4 = 0 in the jet region. In contrast, Gj,4 ̸= 0 in cone region
(1) (see expressions (12)), which implies a logarithmic singularity when θ → π
(or R → ∞). Therefore, G2,i|i=1,2,3 cannot be identical to G1,i|i=1,2,3, and a
perfect match is impossible. However, the singularity on the axis diminishes
with the cone angle since G1,4 vanishes as α/4 → 0, while the other coefficients
remain of order unity or even larger.

In the following, a way to obtain a global solution by an optimal approximate
analytical match between the two solutions of (10) at the intermediate angle χ
together with the solution on the inner side of the jet is presented.

Given a viscosity ratio λ, a set of 11 unknowns to solve the problem is given
by the following:

1- Eight coefficients, namely Gj,i|j=2,3;i=1,2,3 and A3,i|i=1,2,
2- The jet diameter RJ ,
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3- The cone angle α, and
4- The angle χ where the errors between the solutions at domains (1) and

(2) are minimal (approximate matching), or zero.

3.2.1 Detailed procedure to calculate the remaining coefficients Gj,i

and A3,i

Recalling that in units of l0 the variable R is R≫ 1 in the intermediate conical
region, the 11 equations necessary to resolve the 11 unknowns are obtained as
follows.

1- After applying the boundary conditions on the jet axis (3) and neglecting
the resulting terms smaller than R−3 (that is, neglecting R−4 and beyond),
the condition of zero normal velocities at the jet surface (2 conditions) give 4
equations for terms of the order R and R−1.

2- Moreover, the continuity of tangential velocities (1 cond.) give 2 eqns. for
terms as R0 and R−2.

3- Finally, the normal and tangential stresses at the jet surface (2 cond.)
give 3 eqns. for the normal balance (involving R1,0,−1 terms), and 2 eqns. for
the tangential balance (involving R0,−1 terms).

These 11 resulting equations together with the condition (21) provide a
global system of 12 equations. However, only 8 of them are independent compat-

ible algebraic equations, sufficient to solve the 8 unknown coefficients Gjet
j,i

∣∣∣
j=2,3,i=1,2,3

and Ajet
3,i

∣∣∣
i=1,2

. However, the choice of the 8 equations has to be made carefully

among all possible 8-element subsets of 12 elements. To do this, we follow this
procedure:

1- First, solve the coefficients {G2,2, G2,3, G3,1, G3,2, G3,3} as functions of
the remaining variables and unknowns by setting to zero on the jet surface the
orders R1 and R0 of the normal velocity, the difference between the tangential
velocities and the normal and tangential stresses. This yields just four indepen-
dent homogeneous algabraic equations. The inhomogeneous equation remaining
to complete the linear algebraic system of five equations is given by the order
R0 of the flow rate (21).

2- Setting A2,1 = A1,1 and A2,2 = A1,2, solve G2,1 by setting the order R−1

of the tangential velocities on the jet surface to zero.
The orders of R higher than R−2 are null at this level after solving steps

1 and 2. Finally, three more equations come from setting the left order R−3

of the tangential stress on the jet surface to zero. However, two of them are
incompatible. Thus, leaving aside RJ , we solve the three possible compatible
combinations of two equations among the three equations for the two unknowns
{A3,1, A3,2}. One of the choices minimizes the inhomogeneous part of the ex-
cluded incompatible equation. Using Mathematica®, the procedure described
finally produces the following solution:
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G3,1 = − q

πR2
J

(
3λ csc2

(
α
2

)
(2λ− 1) (2 cos (α) + 1)

+
1

2

)
(23)

G3,2 = − q

πR2
J

6λ cot2
(
α
2

)
(2λ− 1) (2 cos (α) + 1)

(24)

G3,3 =
q

πR2
J

(
1

2
−

3λ cot2
(
α
2

)
(2λ− 1) (2 cos (α) + 1)

)
(25)

G2,1 = − q

πR2
J

(
3λ2 cot2

(
α
2

)
(2λ− 1) (2 cos (α) + 1)

+
1

2

)
(26)

G2,2 = − q

πR2
J

6λ2 cot2
(
α
2

)
(2λ− 1) (2 cos (α) + 1)

(27)

G2,3 =
q

πR2
J

(
1

2
−

3λ2 cot2
(
α
2

)
(2λ− 1) (2 cos (α) + 1)

)
(28)

A3,1 = q
3 csc4

(
α
2

)
((3− 5λ) cos (2α)− 3λ+ 1)

32π (2λ− 1) (2 cos (α) + 1)
(29)

A3,2 = q
csc4

(
α
2

)
(3 (λ− 1) cos (2α) + 5λ− 1)

32π (2λ− 1) (2 cos (α) + 1)
. (30)

So far, we have already obtained the best possible solutions to the surface
problems of the cone (exact) and of the jet (exact up to the order R−2)). The
next step is to finally solve the matching problem of solutions in regions (1) and
(2) at an intermediate angle χ (see Figure 4).

One might be tempted to consider solving the problem by linearizing the
equations for small angles ϵ = RJ/R≪ 1. However, this not only does not save
any effort compared to using the full exact expressions, but also results in an
unproductive mathematical burden compared to the optimized procedure de-
scribed. Instead, an alternative complete formulation using a consistent slender
approximation from the beginning is given in a separate section (see Section 4).

As already said, the outer stream functions ψ
(1)
1 and ψ

(2)
1 share the same

part Aj,2 cos
3(θ) + Aj,1 cos(θ) (j = 1, 2). However, the part multiplied by R2,

namely

ϕ(j) = Gj,1 +Gj,2 cos(θ) +Gj,3 cos
2(θ) +Gj,4 sin

2(θ) tanh−1(cos(θ)) (31)

is different at outside regions (1) and (2) due to the logarithmic part of the
solution at region (1), which should be zero at region (2) to satisfy regularity at
the axis when R→ ∞. A perfect match between both solutions is impossible for
simple uniqueness reasons, but one can hypothesize the existence of a certain
intermediate angle χ where the velocities and stresses can be matched. This
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would happen if the values of ϕ(j)(θ)
∣∣
j=1,2

and its first and second derivatives

match at θ = χ.
Thus, the matching involves only the coefficients Gi,j , given by (23)-(28)

since the flow rate solution (coefficients Ai,j) is matched. This means that the
quantity UJ = q/(πR2

J), that is, the average velocity of the jet, is the only
relevant variable in the match, independently of the length scale or flow rate
used. Without loss of generality, we set q = 1. Solving the matching problem
entails to find an angle θ = χ mediating domains (1) and (2) where, defining

ϕ(1) − ϕ(2) = ϵ0, ∂θϕ
(1) − ∂θϕ

(2) = ϵ1, ∂2θϕ
(1) − ∂2θϕ

(2) = ϵ2, (32)

the solution to ϵi = 0 for i = 0, 1, 2 would yield the exact matching of velocities
and stresses at the intermediate angle χ. Theoretically, once all coefficients of
ϕ(j) have been solved, this matching (three equations) would solve the three
unknowns RJ (which is the value of RJ in units of the local scale l0), the in-
termediate angle χ and the cone angle α for a given value of µ. However, this
theoretical exact solution does not exist because the three sheets defined by the
equations (32) in the space {α, χ,RJ} with ϵi = 0 do not meet at any non-trivial
point (except at the trivial cylindrical solution α = 0, χ = π for any arbitrary
large value of RJ). This is due to the failure of system (32), defined by succes-
sive derivatives of the first equation, to satisfy the transversality conditions of
Morse-Sard’s theorem [22, 26] (i.e strict independency, or topological absence of
parallelism or tangency of the manifolds defined by the equations) for ϵi = 0: in
fact, derivation defines a linear relationship between equations (32) that violates
those independency conditions.

Nevertheless, the particular nature of system (32), which is linear in RJ

and quadratic in λ, allows one to obtain an optimal approximate solution of the
matching problem. This optimal solutions yields a relationship for the matching
angle of the form χ = χ(α;λ), given in the Appendix, such that the matching
errors ϵi are strictly set to zero: although this does not result in unique RJ

values (by the failure to satisfy the conditions of Morse-Sard’s theorem), one
can find a relationship χ = χ(α;λ) that makes their differences strictly minimal.
In fact, defining an error norm for their differences, the location ξ = χ(α;λ) is
graphically visualized as a narrow “creek” of that error (see Appendix A).

To illustrate how the cone jet solution comes from a regularization of the
exact solution (10)-(14), Figure 5 shows the radial and angular velocities uR
and uθ for large values R. In Figures 5(a),(c), for λ = 0.01, both the regularized
(main plots) and the exact analytical solution with a logarithmic singularity at
the axis θ = π (insets) are shown. In Figures 5(b),(d) the functional form of
the non regularized (denoted by dashed lines) and the regularized (continuous
lines) solutions are plotted, showing the decreasing singular behaviour of uR
for θ → π for decreasing α values, that correspond to decreasing π − χ values
too (see Appendix A). To obtain these solutions, we have used the relationship
between the cone angle α and the matching angle θ = χ that minimizes the
differences between the values of RJ obtained when the matching errors for uR
and uθ are set to zero (see the Appendix A).
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Figure 5: Radial and angular velocities uR and uθ for the analytical solution.
The main plots show the solution regularized at the axis, while the insets show
the exact solution (11)-(14) with a noticeable singularity at the axis (θ = π). (a)-
(b) χ = 2.5 → α = 0.0632; (c)-(d) χ = π/2 → α = 0.1481. R = 2000, λ = 0.01
in both cases. The matching angle χ values for given the α are calculated
according to the functional relationship (59) in Appendix A. Here, the matching
errors of uR (ϵ2 = 0) and uθ (ϵ1 = 0) at θ = χ are zero using the expression (55)
for RJ,2 and RJ,1 respectively. In (b) and (d), a detail of the functional forms of
the regularized (continuous black lines) and non-regularized (black dashed lines)
is presented. The red vertical thin dashed lines represent the angular position
where the approximate matching is performed.
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We emphasize that α is here a free parameter under the assumption of a
conical flow at infinity, with χ a function of α such that χmin ≲ χ < π, such
that χmin ≲ 1.22 as shown in the Appendix. However, the slender body theory
in Section 4 based on α≪ 1, which admits other possibilities at infinity, shows
that instead of α as a free parameter, a local physical capillary number related
to the strength of the external flow (not necessarily a conical flow) fixes α.

Nevertheless, for completeness and consistency, our proposed local analytic
cone-jet solution is completed by the numerical solution at the cone-jet transi-
tion region, which is tackled next.

3.3 The cone-jet intermediate region: numerical imple-
mentation

For a given set of λ and α values, the intermediate region between the cone, a
perfectly conical recirculating flow with a nonzero net flow rate (i.e. q = 1), and
an asymptotically cylindrical jet with a radius at infinity proportional to the
local scale will be solved numerically using a cylindrical coordinate system (z,
r), with z = R cos θ and r = R sin θ, in a rectangular domain [−L,L]× [0, Rout]
sketched in figure 6.

The numerical code solves the conservation of mass and a balance of linear
momentum in the outer (j = 1) and inner (j = 0) subdomains, given by

∇ · vj = 0, (j = 0, 1), (33)

∇pj = λj∇2v, (j = 0, 1), (34)

where vj = wjez + ujer is the velocity field, pj is the pressure, and λ1 = 1
as previously stated. We use the analytical solution as the far-field boundary
conditions at the computational box boundaries:

1. At right boundary, z = Lbox, we assume that the numerical solution
matches the analytical solution for the cone,

wj =
1

r

∂ψcone
i

∂r
uj = −1

r

∂ψcone
j

∂r
, (i = 0, 1), (35)

and F = Lbox tan(α), where r = F (z, t) is the parametric representation
of the interface in terms of z (see margenta line in figure 6).

2. At the left boundary, z = −Lbox, we impose the following Neumann con-
dition for the outer flow

∂w1

∂z
=
∂wjet

1

∂z
,

∂u1
∂z

=
∂ujet1

∂z
, (36)

where wjet
1 and ujet1 are the velocities obtained with the analytical stream

function of the jet solution (ψjet
1 ). On the other hand, for inner flow,

outflow conditions are considered

∂w0

∂z
= 0, u0 = 0,

∂F

∂z
= 0. (37)
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3. At the top boundary, r = Rout, The velocity varies continuously from
the analytical solution associated with the cone to the solution associated
with the jet.

z < − sin(χ) : w1 = wjet
1 , z >= − sin(χ) : w1 = wcone

1 u1 = ucone1 .
(38)

Across the gas-liquid interface, we use the same conditions (4)-(8) already
expressed for the analytical solution.

The governing equations are integrated with a variant of the numerical
method proposed by [19, 18]. The inner (0) and outer (1) domains are mapped
onto rectangular domains by means of the analytical mappings:

r = F (ξ, t)ζ0, z = ξ, [0 ≤ ζ0 ≤ 1]× [−L ≤ ξ ≤ L] (39)

for the inner domain, and

r = F (ξ, t) + ζ1[Rout − F (ξ, t)], z = ξ, [0 ≤ ζ0 ≤ 1]× [−L ≤ ξ ≤ L]. (40)

for the outer domain. These mappings are applied to the governing equations,
and the resulting equations are discretised in the ζ-direction with nζ0 and nζ1
Chebyshev spectral collocation points in the inner and outer domains, respec-
tively. Conversely, in the ξ-direction we use second-order finite differences with
nξ points.

Steady-state solutions of the nonlinear discretized equations with all vari-
ables independent of time are obtained by solving all equations simultaneously
(a so-called monolithic scheme) using a Newton-Raphson procedure.

The analytical numerical cone-jet solution completed so far will be simply
called the “cone-jet solution”. To summarize the physical framework of this
solution, we have:

1- It implies a self-similar conical flow at infinity.
2- The intermediate cone-jet solution is resolved assuming q = 1 This means

that, for numerical simplicity purposes, the intermediate scale l is assumed as
l = lo.

3- Therefore, from the previous points, the intermediate length l should be
very small compared to any other macroscopic length, including that for which
a nearly conical flow is observed.

4- Thus, using lo, mo and to as the units of length, mass and time, we also
have the dimensional value of the flow rate Q = 1.

5- This solution has two independent variables: the viscosity ratio λ and the
cone angle α. The latter is not restricted except for that there is a maximum
velocity that the cone surface can attain, and this is obtained for a specific value
of the angle: αm = 2λ1/2.

Once both the cone-jet solution and the slender body solution proposed in
the following are obtained, their comparison will shed light on the long-standing
nontrivial problem they resolve and will explain the existence of almost conical
tips with invisible ejections in the early physical observations of [31], [25], the
more recent experiments of [13], and the numerical experiments of [24] among
several other works.
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Figure 6: Numerical solution of the intermediate cone-jet region for λ = 0.0125
and α = 0.173, using the asymptotic analytic cone-jet solution as the far bound-
ary conditions of domains (0) and (1), except the outlet conditions of the jet
specified in the text. The flow pattern is virtually identical to that of the ana-
lytical solution (12)-(15) with q = 0 used in Figure 1.

4 Slender body description of the transition re-
gion

The scaling (19) of the cone solution (11) suggests that in the limit of small λ,
slopes are small, and an approximation based on the slenderness of the jet should
be applicable [2, 32, 34, 3]. We follow [34] in applying Taylor’s slender body
theory, developed originally to study drops and bubbles of small or vanishing
viscosity in an extensional flow, to jetting solutions. While slender body theory
is known to fail near conical drop tips [32, 2, 8], our comparison of Figure 7
indicates that this does not apply in the jetting case, even as the jet diameter
goes to zero. In fact, the comparison between the local profiles of non-emitting
conical drop tips and jetting conical tips (Figure 7(b), inset) reveals the totally
different nature of both solutions.

4.1 Slender body theory

We now show that Taylor’s theory, developed for driving by an extensional flow,
can be applied to an arbitrary external flow u(ext)(z, r), p(ext)(z, r), which we
assume satisfies the Stokes equation in cylindrical coordinates. In the slender
limit, the jet is expected to make a small correction, so we write the flow in the
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Figure 7: (a) Slopes s of strained menisci by an extensional outer flow. ”Drop”:
non-emitting tip-rounded menisci, [8]; ”Jet”: meniscus with emission, with Q→
0. The black and red lines have been obtained numerically, while the blue line is
the theory of [8]. The parameter Catip is the capillary number defined with the
scaling of the maximum curvature κm. (b) Scaled profiles H(ζ) of the ”Drop”
and ”Jet” menisci obtained numerically. Here, ζ is either the axial coordinate
z scaled with κm (”Drop”) or with the outer scale, in this case the tube radius
R0 of Figure 1 (”Jet”).
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outer phase as
u(out) = u(ext) + u′,

where u′ is a distribution of two-dimensional point sources along the axis, with
strength A(z): u′ = (0, A(z)/r). This approximation can be verified by a sys-
tematic calculation based on an expansion in the slenderness [2], but physically
it means that the jet’s only effect on the outer flow is to occupy extra volume.
Now A(z) follows from the kinematic boundary condition u · n = 0:

A(z) = h
[
u(ext)z (z, h)h′ − u(ext)r (z, h)

]
. (41)

In the interior, using slenderness, we can assume a parabolic lubrication-
type flow, while in the limit of small λ the external flow is unchanged; hence we
obtain

u(in)z = − 1

4λµ0

dp

dz
(h2 − r2) + u(ext)z (z, h), (42)

using continuity of the velocity. The shear balance does not need to be taken
into account to leading order [2], and the normal force balance reads for a slender
thread:

σ(out)
rr + p(in) =

γ

h
, (43)

using the leading order expression for the mean curvature. Calculating the
stress, we obtain

σ(out)
rr = −p(ext) + 2µ0

∂u
(ext)
r

∂r
− 2µ0A(z)

h2
=

−p(ext) + 2µ0
∂u

(ext)
r

∂r
− 2µ0

h

[
u(ext)z (z, h)h′ − u(ext)r (z, h)

]
. (44)

Expanding in the slenderness, we have u
(ext)
z (z, h) = u0(z) + O(h2) and

u
(ext)
r (z, h) = −u′0(z)h/2 + O(h3), using incompressibility. Thus to leading

order we finally obtain for the inner pressure p(in) ≡ p:

p = γκ+ p0(z) +
2µ0

h
(h(z)u0(z))

′, (45)

where u0(z) and p0(z) are the values of u
(ext)
z and p(ext) on the axis, respectively.

In the interior, in a steady state, the flux is constant:

Q

π
= − h4

8λµ0

dp

dz
+ h2u0(z). (46)

Thus (45) and (46) are a closed set of equations for h(z), provided that u0(z), p0(z),
which characterize the outer flow, are provided.
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4.2 Similarity solutions of the transition region

We are interested in a local description of the entry into a thread, taken to be
at z0, which is unknown, and around which we expand. As in section 2.1.1,√
µ0Q/γ is a length scale. This suggests the similarity solution

h =

√
Qµ0

πγ
λ1/4H(ξ), ξ =

√
πγ

Qµ0
λ1/4(z − z0), Ca =

u0(z0)µ0λ
1/2

γ
, (47)

where Ca is a local capillary number scaled as suggested by (17), (19). Since
the local length scale vanishes in the limit of Q → 0, u0(z) and p0(z) can be
expanded about z0, and only u0(z0) matters at leading order. Moreover, for
small λ, the slope scales like −h′ = α ∝ λ1/2 ≪ 1, so the profile is flat in this
limit, and the slender jet approximation can be applied.

Inserting (47) into (45) and (46), and retaining only the leading terms of
order Q, in the limit of small λ one finds

1 = CaH2 +
H2H ′

8
+

Ca

4

(
H2H ′2 −H3H ′′) , (48)

which is the similarity description valid for λ ≪ 1. For ξ → ∞ (the thread),
(48) has a constant solution of the form

H =
1√
Ca

, ξ → ∞, (49)

On the other hand for ξ → −∞, (48) allows for two linear solutions of the
form H = −sξ, where

s± =
1

4Ca

(
1±

√
1− (8Ca)2

)
, (50)

as long as Ca ≤ 1/8. Taking Ca as given, there is no free parameter; thus we
aim to solve (48), with Ca as a parameter. This situation is shown on Fig. 5(a),
for which a slope of s− = 1 is approached. To do this, we reduce the order by
putting f(H) = H ′, giving

f ′ =
1

fH

(
f

2Ca
+ 4 + f2

)
− 4

CafH3
=

1

fH
(f + s−) (f + s+)−

4

CafH3
. (51)

To find the profile H(ξ), we solve simultaneously ξ′(H) = 1/f ; the constant
of integration is an arbitrary shift of the origin, which we chose as the point
of maximum curvature. We solve (51) starting from the neighborhood of H =

Hm = 1/
√
Ca:

H = Hm + δ, f = −−
√
Ca +

√
128Ca

3
+Ca

4Ca
δ

for small δ. As a result, the solution is determined uniquely.
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Figure 8: Non-dimensional scaled slope −f of the cone-jet profile, for different
Ca values and s−. The black dashed line underlines the Ca = 1/8 case.

In Fig. 8 we illustrate how only the smaller root s− < s+ is selected, it
being approached by −f from below. Namely, the second contribution on the
right of (51) is always positive, while the first vanishes as s− is crossed. Thus
f ′ is positive, so −f can only decrease, making it impossible to cross. On the
other hand, for Ca > 1/8 there is no more linear solution. Instead, the leading
balance in (51) is now f ′ ≈ f/H, because the term f2 in brackets on the left
dominates. Thus f = f0H, and integrating we have H = H0e

f0ξ, the profile is
increasing exponentially (see Figure 8). Consequently, despite the fact that the
approach to this behavior is extremely slow, so that it looks like a linear profile
with a slowly varying slope, the profile would never reach the Q→ 0 limit with
arbitrary but finite boundary conditions, a limit that is conceptually achievable
by the conical profile.

So far, Ca is a parameter which can take any value, depending on the position
of z0. Indeed, since u(z) is expected to vary along the axis, Ca can in principle
take any value. It must adjust itself as part of matching of the local profile to
the global solution. One possibility is that the solution adjusts itself such that
Ca ≈ 1/8. Intuitively, in a regime where the flow strength is increasing with
z, this might be understood by the following argument: if z0 moves forward,
Ca increases, pushing z0 further forward. This will continue up to reaching a
point where the similarity (conical) solution can no longer be matched, which
is only possible as long as the profile is linear. This suggests that the similarity
solution is tuned to its critical value. This suggests that z0 is selected such that

u0(z0)

vc
≈ 1

8
√
λ
, (52)

in the limit of small Q. This would mean that the local capillary number Ca
is maximized for small λ, and in turn the local slope of the conical region is
h′ = −2

√
λ, in remarkable coincidence with (19): it is equal to the cone angle

αm that maximizes the local speed on the cone surface for the initial exact
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analytical solution (11)-(14). Since this slope is small in the limit λ → 0, this
means that the slender body approximation is justified in this limit.

In summary, compared to the cone-jet solution, the physical framework of
this slender body solution implies the following:

1- This solution has two independent variables: the viscosity ratio λ and

the local capillary number Ca = u0(z0)µ0λ
1/2

γ , where u0(z0) is the velocity of the
external flow on the axis at the location z = z0, in the absence of a jet as a first
approximation: It measures the strength of the external flow.

2- The cone angle α of the cone-jet solution is related to Ca of the slender
body solution by the expression

α =
1−

√
1− (8Ca)2

4Ca
λ1/2. (53)

3- The latter is not restricted except for that there is a maximum value
Cacr = 1/8 to have a conical flow at infinity. This Cacr leads to a slope that
coincides with the angle of the cone jet solution for which the velocity on the
cone surface is maximized: αm = 2λ1/2.

4- It resolves the complete cone-jet intermediate region. It also provides
a universal solution in terms of rescaled variables that involve the properties
of the liquid, the liquid flow rate, and the local strength of the external flow.
Naturally, this strength can be related to the surface velocity in the cone through
a universal constant of the order unity that depends on the external velocity
field used.

5- The flow rate Q can be obtained in terms of the value of Ca, the liquid
properties, and the velocity of the external flow. Like in the cone-jet solution,
if one uses lo =

√
µ0Q/γ as the length scale, Q = 1.

5 Results

In this section we present examples using the cone-jet and the slender body so-
lutions. First, we compare both solutions at the local scale lo. Afterwards, for
consistency, we give examples of the comparison of the slender-body solution
with complete simulations with near-real boundary conditions, which under-
scores critical aspects revealed by the slender-body solution.

5.1 A local comparison of cone-jet and slender-body solu-
tions

Secondly, in Figure (9) we compare the cone-jet and the slender body solutions
for Ca < 1/8, which corresponds to α < αm. The relationship between Ca
and α is given by (53). After rescaling the cone-jet solution according to the
definitions (47), the agreement is nearly perfect, as expected since λ≪ 1.

In general, while the slender body theory assumes that a consistent error
of the order of O(αn) with α ≪ 1 and n > 1 occurs and affects all variables
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Figure 9: Comparison of the cone-jet and slender body solutions for Ca < 1/8,
or alternatively α < αm for two Ca values. Here, λ = 0.0025; α and Ca are
related by (53). (a) The cone-jet profiles. (b) The cone-jet slopes.

26



everywhere, the cone-jet solution assumes that the errors are restricted to the
region where two solutions of the external flow are matched, imposing exact
conditions at the cone and the jet. In contrast, the slender body theory uses
a physically meaningful parameter Ca, resolves the cone-jet region, reduces the
problem to a universal scaling structure of the cone-jet geometry, and indicates
the maximum value of the local flow strength for which the flow can be conical
for a given viscosity ratio λ.

5.2 Comparison of the slender body solution with a com-
plete numerical solution.

In this section, we provide an illustration of the hint anticipated by the end
of section 4.2, suggesting that the existence of a critical Cacr implies that, for
increasing strengths of the external flow over a certain value which depends on
the nature of that flow, the local flow is tuned to its critical value. To this end,
we use the extensional flow solution used in [24]; see Figure 10 for details of the
definitions used to perform the comparison.

Figure 11 represents the local cone-jet transition from the complete numeri-
cal solution of a flow according to Figure 10, compared to the solution provided
by the slender-body theory. To provide the most consistent comparison, we
define a local capillary Ca2 calculated with the velocity of the flow at the inter-
face of the complete solution under the same extensional flow, at the same axial
location z = z0 as the definition of Ca. The value of Ca of the slender body
solution is obtained by matching the value of the rescaled profiles and their first
and second derivatives at z = z0, with the complete solution in the case of the
lowest possible flow rate value Q achievable by our numerical method. We have
used three values of the external macroscopic capillary number C = Uµ0/γ
of the extensional flow (where U is the external characteristic velocity, [24]),
namely C = 0.09, 0.11 and 0.3. To find the values of Ca used in the slender
body description, we extrapolate Ca2 as found from full numerical solutions for
successively smaller Q, as shown in Fig. 12. In each case, Ca2 converges like a
power law toward a limiting value of Ca2. However, the power law exponent
decreases with increasing C, indicating progressively slower convergence. Given
the Ca-value thus found, the convergence of the numerical solutions to the slen-
der body theory is excellent as Q→ 0 for the smaller C value. Intriguingly, the
local solution around z = z0 appears to be below Cacr for the three values of C
used in this study, although the convergence is slower as C increases. All this
is illustrated in Figure 12.

In conclusion, our results suggest that when the external capillary number
is small, the rescaled macroscopic solution converges relatively rapidly to the
slender body solution at large scales as Q decreases. However, as the external
flow strength increases, the local flow appears to approach Cacr = 1/8 from
below, and the corresponding local angle α of the cone tends to αm = 2λ1/2,
but the approach of the numerical solution to the macroscopic cone angle α
eventually seems to demand extremely small values of Q.
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Figure 10: Shape and streamlines of a cone-jet meniscus subject to a purely
extensional flow [24]. The definition of the local capillary number Ca2 is indi-
cated, where instead of the velocity of the external flow at the stagnation point
z0 on the axis, u0(z0), we use the velocity of the interface of the cone-jet at the
same z0, i.e. u(z0). The magenta arrow indicates the value of the velocity of the
external flow at the axial location of the stagnation point of the inner flow, in
the absence of the latter, necessary to calculate Ca as defined, while the yellow
arrow indicates the value of the velocity on the interface at the axial location
z = z0 to calculate Ca2.
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Figure 11: Normalized cone-jet shapesH(ξ) and their slopesH ′(ξ) for λ = 0.025
and three different C values: (a) 0.09, (b) 0.11 and (c) 0.3. Black lines corre-
spond to the slender body theory, while color lines correspond to the numerical
case with actual boundary conditions and different flow rates [24].
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5.3 Local universality adding far-field scales: numerical
solutions with non-conical macroscopic boundary con-
ditions

Since the local solutions presented correspond to imposed macroscopic flow con-
figurations, and these configurations are generally determined by a parameter
that reflects the strength of the external flow, this strength should be also re-
flected by an internal parameter. The emergence of local universality is demon-
strated using slender body theory. This local solution lacks any macroscopic
far-field scale, except a local capillary number Ca as proposed. The introduc-
tion of far-field scales and parameters can then be carried out numerically, as
in a recently published configuration [24], where the authors did not attempt
to find any local universality. However, when such results are examined for the
smaller possible emitted fluxes compatible with the numerical code, the local
universality here found emerges naturally.

From an analytical perspective, the geometry of the far-field external flow
may involve velocity field expansion components in spherical coordinates such
as Rn with n > 2 to verify boundary conditions at far-field scales. Since we
hypothesize that these components disappear at the intermediate length l, for
scales larger than this intermediate scale where our solution is valid, an aug-
mented stream function can be expressed in spherical local coordinates as

Ψ(1) =
G1

2
R3 sin2 θ cos θ. (54)

The R3 behavior of this solution causes an unavoidable deviation in the far field
from the cone. However, even in this case, the local universality shown by our
local conical solutions still emerges when the emitted flow rate is numerically
decreased to the method’s working limits.
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6 Discussion and conclusions

The three approximations presented in this work (i.e. analytical, slender body
theory, and numerical) show excellent agreement when the local flow admits a
strictly conical solution, which according to slender body theory occurs for local
capillary numbers Ca < 1/8. This imposes a strict maximum value of the axial
velocity of the external flow at the tip of the cone in the absence of the cone,
above which the local flow cannot be conical, but rather cusp-like.

The limit set by the local capillary number Ca = 1/8, which corresponds to
the value of the cone angle αm for which the analytical solution has a maximum
velocity at the interface, represents a strong conceptual separation. The conical
geometry (Ca < 1/8) allows a quick approach of the flow rate Q to zero from any
arbitrary macroscopic flow scale, as long as the strength of the macroscopic flow
is weak (i.e., small macroscopic capillary values C). This is due to the self-similar
conical geometry of the flow at any vanishing intermediate scale. However, any
value Ca above 1/8, corresponding to a cusp geometry, while apparently allowing
a local vanishing flow rate, cannot be assimilated to an arbitrary intermediate
scale of vanishing size compared to the macroscopic scales, and therefore the
flow rate cannot be made arbitrarily small. In fact, the numerical solution
suggests that for strong enough macroscopic flows, the local flow will eventually
converge to the local conical solution with Ca = 1/8, being it the only one
possible local solution for arbitrarily strong macroscopic flow conditions. More
detailed analysis is required to determine this.

In addition, we used an external extensional flow as the macroscopic flow
configuration in this work as a bench test. Because the acceleration at the axis of
this flow is very weak for axial coordinates beyond unity, the numerical solution
shows very elongated menisci. Other configurations that create stronger local
flow convergence (like flow focusing or selective withdrawal) will allow shorter
menisci. Selective withdrawal may result in a unique solution for a given λ ratio
of viscosities, resulting in a conical tip with a specific value of the macroscopic
C matching the extreme local conical solution Ca = 1/8. This will be a topic
of future analyses.
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A Approximate analytical solution

In principle, the three equations (32) define a system of three equations with
three unknowns {RJ , αo, χ}. Unfortunately, these equations do not satisfy the
necessary transversality conditions to yield fixed points or solutions, since the
second two are obtained by derivation of the first [22, 26]. However, equations
(32) are linear with respect to RJ , and the three values of RJ can be solved as
functions of the respective value of the error ϵi for each of the equations:

RJ,i =

(
Ni

Eiϵi +Di

)1/2

, i = 1, 2, 3, (55)

where

Di = Ai(Bi + CiL), i = 1, 2, 3; L = log

(
tan

(
χ
2

)
tan

(
α
2

)) , (56)

and

N0 = −4M(cos(χ) + 1)
(
4λ
(
3λ cot2

(α
2

)
cos2

(χ
2

)
+

(2 cos (α) + 1) sin2
(χ
2

))
+ (2 cos (α) + 1) (cos(χ)− 1)

)
;

N1 =
(
16M csc

(α
2

)
sin(χ) (4λ (3λ (cos (α) + 1) (cos(χ) + 1)+

(cos (2α)− cos (α)) cos(χ)) + 2 (cos (α)− cos (2α)) cos(χ))) / (2 cos (α) + 1) ;

N2 =
(
8M csc

(α
2

)
(4λ (3λ (cos (α) + 1) (cos(χ) + cos(2χ))+

(cos (2α)− cos (α)) cos(2χ)) + 2 (cos (α)− cos (2α)) cos(2χ))) / (2 cos (α) + 1) ;

M =
q cot

(
α
2

)
((λ− 1) cos (α) + λ+ 1)

π (2λ− 1)
;

A0 = 2 (cos (α) + cos (2α) + 1) cos2
(χ
2

)
;

B0 = 2 (cos (α)− cos(χ)) ((λ− 1) cos (α) + λ) ;

C0 = −8 cos2
(α
2

)
sin2

(χ
2

)
((λ− 1) cos (α) + λ+ 1) ;
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Figure 13: The norm error between the values of RJ for zero matching errors
ϵi = 0. Here, λ = 0.005.

A1 = 8

(
sin
(α
2

)
− sin

(
3α

2

))
sin(χ),

B1 = 4λ cos2
(α
2

)
(cos (α)− cos(χ)) + cos (α) (2 cos(χ) + 1)− cos (2α) ;

C1 = 2 cos(χ)
(
4λ cos4

(α
2

)
+ sin2 (α)

)
;

A2 = 4

(
sin
(α
2

)
− sin

(
3α

2

)
B2 = λ

(
2 (3 cos (α) + cos (2α) + 2) cos(χ)− 4 cos2

(α
2

)
cos(2χ)

)
+

2 cos (α) cos(2χ) + (cos (α)− 2 cos (2α) + 1) cos(χ);

C2 = 2 cos(2χ)
(
4λ cos4

(α
2

)
+ sin2 (α)

)
;

E0 =

(
2 cos

(α
2

)
+ cos

(
3α

2

))
csc
(α
2

)
((λ− 1) cos (α) + λ+ 1) ;

E1 = 8 cos
(α
2

)
((λ− 1) cos (α) + λ+ 1) ; E2 = E1. (57)

Setting ϵi = 0 and defining an error norm as

ε(α, χ;λ) =
(
(RJ,1 −RJ,2)

2 + (RJ,2 −RJ,3)
2
)1/2

(58)

one can investigate the minimum values that ε can achieve for a given λ. Figure
13 illustrates the strong nature of the minimum (a “creek”) that appears for
certain relations χ = χ(α;λ). The minimum is an extremely well-defined creek
that can be located where both ∂αε = 0 and ∂χε = 0. Figure 14 gives the
locations of the creek on the plane {α, χ} and the values of εmin for different λ
values.
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2λ1/2. (b) The values of the minima, collapsed by εminλ
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Interestingly, the matching angle χ for the maximum cone angle αmax is
about χ ≃ 1.22 for all λ, at least in the range explored. However, the minimum
error norm of the jet radius εmin decreases proportionally to λ2. The minimum
value of εmin for a given λ is located at a specific cone angle α∗ ∼= 0.8λ1/2 with
a matching angle χ ≃ 2.55 nearly independent of λ.

The curves in Figure 14(a) can be collapsed defining an abscissa as x =
αλ−1/2, and can be fitted by the following expression:

f(x) = Axφ1

((
x

x1

)δ1

+ 1

)φ2/δ1 ((
x

x2

)δ2

+ 1

)−φ1+φ2
δ2

(59)

The fitting parameters result

{A, x1, x2, φ1, φ2, δ1, δ2} = {0.71, 1.32, 1.58, 1.05, 3.0, 13.0, 14.0}.

The closed expression (59) can be used to obtain the approximate matching
angle χ with a good precision as χ = π − f(αλ−1/2).
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In conclusion, the analytical solution produces a local flow solution on the
intermediate scale l involving a conical meniscus with angle α related to the
strength of the outer flow, defined by a local capillary number Ca, as shown by
the slender body theory. This cone angle is therefore a free parameter for the
purposes of this work, but is is actually related to the strength of the macroscopic
flow at large scales compared to these where the conical solution here obtained
is a valid approximation.
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