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Air entrainment by a viscous jet plunging into a bath
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A liquid jet plunging into a container of liquid often entrains a thin film of air with it, producing

bubbles.

This bubble production is detrimental to many industrial processes, such as filling a

container with a molten glass or polymer, or in coating processes. Conversely, in making a foam one
uses this effect, hence it is important to control the rate of bubble production. Here, we measure
the amount of air entrained by a viscous jet over a wide range of parameters and explain the
phenomenon theoretically. A simple scaling argument accurately predicts entrainment rates over 4

orders of magnitude in the dimensionless jet speed.

PACS numbers: 47.15.Rq, 47.15.Gf, 47.55.Dz

Air entrainment is a common phenomenon that can
be encountered in many environmental situations - as in
breaking waves or steep chutes which contributes to river
oxygenation- or in various industrial processes - such as
aeration of water in open channels, coating processes or
pouring of liquids. A paradigm for air entrainment is a
jet plunging into a bath of fluid. If the fluid viscosity is
small (e.g. water) [1-3], air entrainment only occurs if
it is provoked by perturbing the jet. If the viscosity is
higher (100 times that of water or more) [4, 5], air en-
trainment occurs spontaneously, by producing an air film.
Here we present the first experimental measurements of
entrainment rates and explain the results theoretically.

As described in [4-8], the liquid/air interface is hol-
lowed by the flow of the plunging jet and a dip is formed
around the fluid stream. Such a profile, which is continu-
ous as long as the velocity V' of the jet is constant, can be
seen in Fig. 1 a). Something more dramatic happens if V'
increases above a threshold value V.. The stationary pro-
file ceases to exist and a film of air is entrained with the
jet into the bath. This gaseous film, which wraps around
the liquid jet, decays into air bubbles a few centimeters
below the surface [9]. This phenomenon is of tremendous
practical importance: in many industrial processes a vis-
cous liquid (typically molten glass, metal or polymer) is
poured inside a mold and the formation of bubbles dam-
ages the quality of the molded object.

Previous studies have focused on the threshold velocity
V. below which no air is entrained. At speeds close to V.
the interface at the bottom of the hollow region is very
close to a cusp (see the circled zone of Fig.1 a)). Such
singular features of free surfaces were first reported by
Joseph et al. [10], and analyzed theoretically by Jeong
and Moffatt [11], who found that a local balance between
viscosity 1 and surface tension  produces curvatures
which increase exponentially with the capillary number
Ca =nV/~.

Any increase in jet velocity leads to a large decrease of
the radius of curvature at the tip of the cusp. As pointed
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FIG. 1: Experimental set-up. A cylindrical liquid jet of vis-
cosity 7, surrounded by a fluid medium of viscosity 7o plunges
into a bath of the same liquid. The diameter of the jet is of
order of 5 mm. On the left the velocity of the jet is below
the threshold velocity, on the right it is above, hence the jet
entrains an air film of thickness h into the bath.

out in [6], this eventually results in the destruction of
this tip: the upper fluid (usually air, of viscosity n9), is
forced into the tip and back out again by the external
flow, and thus exerts a lubrication pressure on it. Below
a critical tip radius (thus above a critical jet velocity), the
tip ”cracks” and a thin film of the upper fluid (often air)
is entrained inside the bath [4], [12], [13]. In [6] it was
shown that this critical tip radius increases with ny/n,
which together with Moffatt’s law for the critical radius
yields a threshold velocity V.. o In(n/no), as was recently
confirmed experimentally [7, 8].

Just below V., we experimentally find the depth L of
the region hollowed by the jet (cf. Fig.2 (a)) to be about
1 cm, several times the capillary length. This agrees with
the estimate of L ~ \/nV./pg, which follows from bal-
ancing viscous forces with gravity [7]. The surface defor-
mation as measured by L thus far exceeds the capillary
length k=1 = \/v/pg, which results from a capillary -
gravity balance.

The temporal development of the air film displayed in
Fig.2 indeed illustrates these different features. A jet 5
mm in diameter (about 1000 times more viscous than wa-
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FIG. 2: A jet of viscous liquid (here silicone oil of viscosity
n = 970 mPa.s) and diameter 5mm impinging on a bath of
the same liquid. Below a threshold velocity, the jet hollows
the bath surface to a depth L, which increases with jet ve-
locity up to a value of about lem (a). Above this threshold,
air is entrained with the jet ((b) to (e)), and forms a station-
ary trumpet-like shape (f). At the same time, the surface of
the bath around the jet relaxes to the shape of a static non-
wetting meniscus, whose size is in the order of millimeters.
The interval between two successive pictures is 130 ms. Note
that the black line at the edge of the jet is no indication of
the film thickness; it is due to the reflection of light by the
curved air film of lower index of refraction.

ter) plunges into a bath of the same liquid. The jet veloc-
ity is controlled by the height of the reservoir from which
the jet is formed. It is measured with a fast camera by
following the motion of particles inserted randomly into
the jet. Right above the interface, the velocity profile was
observed to be a plug flow. In Fig.2(a), the jet velocity
is below the velocity of entrainment (V' < V), hence the
profile observed is stationary. The height of the reservoir
and therefore the velocity of the jet is slightly increased
between panel (a) and (b). This rise has a dramatic ef-
fect: the interface breaks and the jet entrains with it a
thin air film (looking black because of light reflection).
Its length grows from panel (b) to (f) where it reaches its
final stationary trumpet shape. This shape is expected
since the jet slows down as it enters the bath, and conser-
vation of mass implies a gradual increase in radius (from
which we can deduce the jet velocity as it penetrates the
bath). At a certain depth (of several centimeters), the
film decays into bubbles which are then driven upward,
and burst when they reach the surface. Note the velocity
of the jet remains constant from panels (b) to (f).

The formation of the new stationary state (panel f) is
accompanied by a considerable reduction in surface de-
formation of the bath. This is because the air film now
“lubricates” the entry of the fluid jet, and shear stresses
both inside the jet and in the liquid bath are greatly re-

FIG. 3: Profile of the interface between the bath and the film
of air, deduced from photographs such as Fig.2 (f), shown
as the black line in the inset. The depth of the meniscus is
plotted as a function of the radial position, and only the upper
half of the trumpet shape is shown, where the profile is still
vertical. The different data points correspond to different jet
velocities (all above the threshold velocity of air entrainment),
between 0.7 and 2.2 m/s. All the data collapse onto the full
line, the static profile of a non-wetting meniscus.

duced. Instead, the shape of the bath surface close to the
jet is now set by a purely static balance of gravity and sur-
face tension forces, as confirmed by our measurements of
the interface shape presented in Fig.3. We superimpose
profiles of the final shape (cf. Fig.2 (f)) corresponding to
different jet velocities, and compare them to the shape
of a static meniscus (full line). The latter is obtained
by integrating the Laplace equation yC' = pgz (C' is the
interface curvature) twice, assuming a “contact angle”
of 180° with the air film, and a flat profile for z = 0.
The remarkable consequence of this observation is that
for 5 > n the fluid viscosity 1 becomes inconsequen-
tial, and the rate of air entrainment is determined by the
speed of the jet and the viscosity of the entrained fluid
1o alone.

Accordingly, we measured the variation of the film
thickness h with jet speed for different values of 79. In
the case of oil films (between 10 and 30 times the viscos-
ity of water) in a glycerol bath the film thickness could
be measured optically. To measure the thickness of the
film of air (a few microns), we determined the total vol-
ume of the air bubbles being formed, thus giving the flow
rate of air. Knowing the mean velocity of the air film -
i.e. half the velocity of the jet - and the radius of the jet
R, we can deduce the thickness of the film. Note that we
measure R close to the surface, where it is very nearly
constant, indicating that the jet speed is also constant
and equal to the original jet velocity.

We find that for a given liquid-liquid or gas-liquid sys-
tem, the film thickness increases with the jet velocity
like a power law V*, best fits giving « = 0.7 £ 0.1 (cf.
Fig.4). In fact, using a simple scaling argument based on
our previous observations, we are able to quantitatively
describe all our data. Namely, the film is sustained by
the interplay between surface tension forces in the outer
meniscus (which oppose the film’s formation) and the vis-



10
h (pm)

0 0.05 0.1 0.15 0. 0 1 2 V (m/'s) 3

V (m's)

FIG. 4: Thickness of the film entrained by a glycerol jet
(n = 900 mPa.s) impacting a bath of glycerol. (a.) Oil films
(the black, white and gray symbols designate silicone oils of
respective viscosity 7o = 8,20 and 32 mPa.s). (b.) Air film
(no = 2-1072 mPa.s). Note the difference in thickness be-
tween both cases. The fits are scaling laws of the form V¢ |
giving in both cases a = 0.7 £ 0.1

cous forces inside the thin film (which are responsible for
entrainment). Equating pressure gradients at the junc-
tion between the static meniscus and the film, we obtain

Ky /A & noV/h2.

On the right appears the classical expression for the lubri-
cation pressure gradient [18] based on the film’s viscosity
7o, on the left the gradient of curvature. To estimate the
latter, we introduced a typical length scale A over which
the film thickness is varying in the matching region. To
determine A\ we observe that the curvature of the film
and of the static meniscus must match, yielding

K /A2
Combining both equations yields our central result
ha k™ (V7). (1)

The predictive power of this expression is best appreci-
ated by summarizing our data for different upper vis-
cosities 7 in a single plot using the appropriate capillary
number Cag = n9V/v. As shown in Fig.5, equation (1)
correctly predicts the film thickness over 4 orders of mag-
nitude in the capillary number, and for a variety of dif-
ferent fluid-fluid and air-fluid systems. The straight line
of figure 5 represents equation (1), including a prefactor
0.5 =+ 0.2 which has been fitted to the data.

It has not escaped our notice that the arguments lead-
ing to (1) are the same used to derive the well-known
Landau-Levich law [14, 15] for the thickness of the fluid
film entrained on a solid plate or fiber being withdrawn
from a bath of viscous liquid [16]. In that case, the prefac-
tor of equation (1) has been calculated and found equal
to 0.9. Quite surprisingly, very similar arguments still
apply in our case, but with the liquid jet assuming the
role of the solid plate, and the air the role of the viscous
fluid. The reason is that the air film serves to isolate the
jet from the rest of the fluid, such that the viscous fluid
no longer plays a dynamical role, but just supplies the
boundary conditions.
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FIG. 5: Thickness of the entrained film (empty symbols: air;
full ones: silicone oils) normalized by the capillary length, as
a function of the capillary number Cao = noV/~, for a glyc-
erol jet in a glycerol bath (except for the diamond, which is
obtained using a silicone oil of same viscosity yet different
surface tension as glycerol). Because of the large interval ex-
plored here, both scales are logarithmic. The data are fitted
by a straight line corresponding to equation (1), with prefac-
tor 0.5 £+ 0.2.

In fact the boundary conditions that apply here are
slightly different from those of the classical Landau-
Levich problem. Namely, the outer boundary condi-
tion for the film now is that of a deformable solid,
which changes the prefactors, but not the scaling laws.
Schwartz et al. showed that a solid-like boundary thick-
ens the entrained film (by a factor of 22/3)[17], which
physically is due to the increased resistance of the capil-
lary back-flow, making it less efficient than in the pres-
ence of a free boundary. Combining the prefactor of 0.9
given by the classical Landau-Levich law and the cor-
rection cited above give a prefactor of 1.4 for equation
(1), which is three times larger than the one we found
experimentally.

The change in boundary condition toward that of a
solid also affects the flux of entrained matter: since the
flow in the entrained film has a Couette profile, (instead
of being a plug flow, as in a classical Landau-Levich film),
we find @ = 27 RhV/2 for the flux, denoting the jet radius
as R. Thus the flow of air depends strongly (like V°/3)
on the velocity, as suggested by everyday experience: we
all know that the injection of air into an egg white is
considerably enhanced by using a (fast) beater rather
than a fork.

Fig.5 shows that (1) still describes our data for cap-
illary numbers approaching unity, which can be under-
stood by an argument proposed by Derjaguin [18]. For
Cag larger than unity, the meniscus is no longer quasi-
static, but deformed by the flow, and gravity (instead of
surface tension) becomes the force opposing entrainment.
Balancing gravity Apg with the viscous force noV/h? im-
mediately yields h ~ x~(19V/7)/? as the entrainment
law at large capillary number. This slight difference in
exponent (1/2 instead of 2/3) implies a gradual transition
toward another scaling law for large Cag, with relatively
small corrections to (1) for Cag < 1.

However, we do note that the high capillary number



data fall below the line given by (1), which is probably
the result of the transition toward the new power law.
Fitting the prefactor only to the low capillary number
data would increase it and bring it closer to the theo-
retical prediction. To fully understand the origin of the
remaining discrepancy in the prefactor, a full asymptotic
analysis taking into account the antagonist curvature of
the jet (which tends to thin the jet) would be needed,
but it is beyond the scope of this letter.

Our results might be relevant to both the making of
foams, as well as for the understanding of the way emul-
sions form. The main remaining obstacle is to elucidate
the role of surfactants in both processes, which is the
next step in our research program. We also expect that
the rate of air entrained by solids plunging into a viscous
bath - which has never been explained to the best of our
knowledge - should be given by the same arguments, the
air film similarly allowing a decoupling between the mov-
ing solid and the quiescent bath.

Note finally that a similar phenomenology is observed

in a variety of situations where entrainment is forced ex-
ternally, for example by a rotating cylinder [10]. An-
other example consists in extracting the upper liquid
from a two-fluid interface through a pipette (selective
withdrawal) [19]. Above a threshold velocity, a very thin
stream of the lower liquid is extracted as well. However in
these cases there is no decoupling between the extracted
liquid and the quiescent bath, so our reasoning does not
apply. Instead, an alternative scaling theory was recently
put forward for selective withdrawal [20].

In conclusion we have presented a unifying picture for
the rate of air entrainment into a viscous fluid, both by
impacting jets and solids. The rate depends strongly on
the jet velocity, while the fluid viscosity is unimportant.
A number of related entrainment phenomena remain to
be understood.
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