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We consider the dynamics of a liquid film with a pinned contact line (for example a
drop), as described by the one-dimensional, surface-tension-driven thin-film equation
ht + (hnhxxx)x = 0; h(x, t) is the thickness of the film. The case n = 3 corresponds to
a film on a solid substrate. We derive an equation of motion for the contact angle θ(t),
which couples to the shape of the film. Starting from a regular initial condition h0(x),
we investigate the dynamics of the drop both analytically and numerically, focusing on
the contact angle. For short times t ≪ 1, and if n ̸= 3, the contact angle changes like

a power law t
n−2
4−n . In the critical case n = 3, the dynamics become non-local, and θ̇ is

now of order e−3/(2t1/3). This implies that for n = 3, the standard contact line problem
with prescribed contact angle is ill-posed. In the long time limit, the solution relaxes
exponentially toward equilibrium.

1. Introduction

It is a fact universally acknowledged that the macroscopic description of a contact
line can take one of two forms (Dussan V. & Chow 1983; Bonn et al. 2009; Wilson &
D’Ambrosio 2023): the contact line may either be mobile, or stuck at a fixed position. In
the mobile case, from the virtual work principle one concludes (de Gennes 1985) that the
contact angle must be Young’s angle, at least in equilibrium (the contact line being at
rest or moving very slowly). In the pinned case, which may arise from random disorder
on the surface (Bonn et al. 2009), or from patterning of the surface (Quéré et al. 2003),
the contact line is stuck at a topographical or chemical barrier. In that case, the contact
angle is undetermined, which one can envision as the contact line ending at a corner
(Hong et al. 2016; Graña-Otero & Parra Fabián 2019) (cf. Fig. 1), so that a whole range
of contact angles is compatible with Young’s angle.

While a huge literature treats the dynamics of thin films bounded by a mobile contact
line, the second case of a pinned contact line is usually examined only with regards to
the conditions under which depinning occurs, i.e. when the contact starts to move again.
This happens for example when a drop is placed on an incline which is sufficiently steep
(Dussan V. & Chow 1983). Here instead we inquire about the nonlinear dynamics of the
film while the contact line position remains fixed. For example, one can imagine placing
a drop on a rough substrate, such that the contact line is always pinned. In general, the
initial shape will not be an equilibrium shape, and the drop shape evolves until such an
equilibrium is reached.

We will assume that transversal variations of the contact line position (e.g. contact
line roughness (Bonn et al. 2009)), are negligible. This could also be ensured by pinning
the contact line to an especially prepared, straight, and sharp-edged ridge. Moreover,
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Figure 1. A summary of the problems considered in this paper. At some initial time t = 0,
a drop is deposited with some arbitrary shape (here assumed symmetric), and which is pinned
between two sites. At early times t ≪ 1, the dynamics are local if n ̸= 3 (right). If n = 3 (left),
the motion of the contact line is driven from regions far away from the contact line. Finally, for
long times, the contact angle, and the entire drop relaxes toward a quadratic equilibrium shape.

we assume that the liquid film is flat, so that the lubrication or thin-film approximation
is valid. Within this framework, we will show that the contact angle is determined self-
consistently through a coupling to the film profile h(x, t) away from the contact line.

We assume that all lengths and time have been made dimensionless, for example using
the width of the fluid film, and the capillary speed γ/η, where γ is the surface tension
coefficient, and η the viscosity. Then the Laplace pressure condition at the interface
requires that p = −hxx is the pressure inside a sliver of fluid. The flow being driven by
pressure gradients px, the fluid flux is f = hnpx, where h

n is known as the mobility. The
mobility measures the viscous resistance to the flow, which depends on the geometry and
other physical effects present. Finally applying mass conservation ht + fx = 0, we arrive
at the thin film equation

ht + (hnhxxx)x = 0, n > 0, (1.1)

which has been used very successfully to describe the evolution of thin layers of viscous
fluid (Oron et al. 1997; Bonn et al. 2009).

To name a few relevant applications of (1.1), the case n = 3 describes a layer of viscous
fluid on a solid substrate. If fluid is allowed to slip partially over the solid surface, n < 3,
with n = 2 in the most popular case of a Navier slip law (Oron et al. 1997; Eggers &
Fontelos 2015). Strictly speaking, (1.1) then consists of two terms with powers n = 2 and
3: λh2 and h3, where λ is the slip length; here we restrict ourselves to keeping a single
lower order term, which dominates near a contact line. For the rest of this paper, we
will assume that the contact line is fixed at x = 0, while the fluid occupies some region
x > 0. For small slopes, the contact angle is then given by θ(t) = hx(0, t). For simplicity,
we treat the representative problem of a two-dimensional drop or strip of fluid of finite
width.

Starting from a smooth but otherwise arbitrary initial condition, we investigate the
dynamics of a drop which eventually relaxes toward an equilibrium profile, which is
quadratic in the thin film approximation. In the next section, we will derive the equation
of motion for θ(t), which is coupled to the dynamics of the fluid film. We will then
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describe a numerical method, based on (1.1), to describe the dynamics of the free surface
of the drop, from early times until equilibrium is reached.
In the third section, we demonstrate that the early-time dynamics of the contact angle

can in fact be described by a linearized equation of motion. This insight is used to
find a local similarity solution describing the contact angle for early times, assuming
n ̸= 3. The degenerate, but physically most relevant case n = 3 is treated in following
section four. The solution now consists of several regions, which are treated separately
and subsequently matched together. Section five briefly describes relaxation of the drop
toward equilibrium. A pictorial overview of the cases considered is shown in Fig. 1. We
close with a discussion, paying particular attention to the relevance of our results to Huh
and Scriven’s contact line paradox (Huh & Scriven 1971). Some details of calculations
are found in an Appendix.

2. Dynamics of the contact line and numerical method

We consider the evolution of a profile h(x, t), as described by (1.1), which for simplicity
we assume symmetric. The edges of this “drop” are pinned at x = 0 and x = 2,
respectively (and after appropriate scaling). The boundary condition at x = 0 is h(0, t) =
0, while at the point of symmetry hx(1, t) = hxxx(1, t) = 0. For convenience let us write
n = 3− δ, so that δ = 0 refers to the critical case n = 3. To find the equation of motion
for θ, we have to find the term which balances the first term in ht(x, t) = θ̇x + O(x2).
This leads to the expansion

h = θx+ bx2 lnx+ cx2, δ = 0; h = θx+
b

δ
x2+δ +

(
c− b

δ

)
x2, δ ̸= 0; (2.1)

we have written the case δ ̸= 0 such that the case δ = 0 emerges in the limit. Now the
contact angle follows the equation of motion

θ̇ = −2(2 + δ)(1 + δ)θ3b, (2.2)

which is θ̇ = −4θ3b for the critical case n = 3. This introduces a nonlinear coupling
between the contact angle and the shape of the drop, closing the system of equations to
be solved. Curiously, we are not aware of (2.2) having been written down before.
In the limit of long times, we expect the drop to converge toward the equilibrium

profile

heq =
3V

4
x(2− x), (2.3)

fixed uniquely by the drop volume V and the drop being confined between 0 and 2.

2.1. Numerics

Our numerical scheme follows others used previously to solve the highly nonlinear thin
film equation (Dupont et al. 1993; Eggers & Fontelos 2015): we use a fully explicit finite
difference scheme with a staggered grid. To that end, (1.1) is split as

ht + (hn−1f)x = 0, f = hhxxx, (2.4)

and the interval [0, 1] is divided into grid points xi, i = 1 . . . k, with x1 = 0 and xk = 1; f
is defined at the midpoints. The profile hi is used to compute pk = hxx at the grid points.
At the right end we impose symmetry of h, and antisymmetry of f . The values fi+1/2

are calculated from pi using centered differences, pi calculated with a 5-point scheme,
valid for arbitrary grid spacings. The values of f and fx, needed at the grid points for
the first equation, are also calculated with second order accuracy.
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Figure 2. The change in contact angle θ̇ as a function of time from a numerical solution of
(1.1) with n = 3 and initial condition h0(x) = h̄ sin(πx/2), h̄ = 0.1. Thus, V = 4h̄/π. For long

times, θ̇ decays like e−t/λ1 to zero, with λ1 = 8.19, see section 5 below; this exponential decay
is shown as the dashed line. For short times, on the other hand, θ appears to remain constant

for some time (θ̇ = 0); below we show that rather θ̇ behaves like e−3/(2t1/3).

Near the contact line, we impose the expansion (2.1), where the contact angle θ is a
separate variable (which takes the place of v1), and which evolves according to (2.2).
The value of v1, between x1 and x2, is calculated from (2.1). Likewise, for a given θ, the
coefficients b and c are found from equating (2.1) to h2 and h3 at x2 and x3, respectively.
Then if we let ∆ = x2, and x3 = 2∆, we find

b =
1

∆ ln 2

(
θ

2
− h3 − 4h2

4∆

)
, c = −b ln∆+

1

∆

(
h2
∆

− θ

)
. (2.5)

In summary, the variables are h2, . . . , hk−1, v2, . . . , vk−1, and θ: a total of 2k − 4 + 1 =
2k− 3. The equations are the first of (2.4), evaluated at x2, . . . , xk−1, and the second of
(2.4), evaluated at x1/2, . . . , xk−1/2, with the extra equation (2.2).
We use a strongly graded grid, with the smallest (constant) grid spacing near x = 0,

and which is slowly increased away from x = 0, until a maximum spacing of 10−3 is
reached. Our numerical scheme is fully implicit, and second order in time, using a step-
halving method. Comparison between the two steps serves to adjust the time step, in
order to maintain sufficient temporal resolution.

3. Early time dynamics

We begin looking at very early times after the drop has been set down. Although the
original equations (1.1),(2.2) are highly nonlinear, for very early times the equations are
effectively linear, as we show now.

3.1. Effective linear dynamics

We assume that the initial condition can be expanded into a power series of the form

h0 = a0x+ b0x
2 + c0x

3 +O(x4). (3.1)

Since x is small close to the contact line, we can view c0x
3 as a small perturbation to

the equilibrium profile heq = a0x+b0x
2, around which we linearize by writing by writing
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Figure 3. The change in contact angle θ̇(t) as function of time. Black solid line: solution of (1.1)
with n = 3 and initial condition h0(x) = x(2−x)+0.1x2(2−x)2; contact angle found from (2.2).
Boundary conditions are h(0, t) = 0 and hx(1, t) = hxxx(1, t) = 0. Red solid line: solution of the
linearized leading-order equation (3.2) with heq = 2x and initial condition δh(x, 0) = −0.4x3.
Boundary conditions for the linearized problem are δh(0, t) = 0 and δh(1, t) = 1, δhxx(1, t) = 1.

h(x, t) = heq(x) + δh(x, t). We thus consider the linear equation

δht +
(
hneqδhxxx

)
x
= 0; (3.2)

we have confirmed numerically that the early time behavior of (3.2) is indeed the same
as that of the full equation.
In a second step, we argue that close to the contact line hneq is dominated by the linear

term heq ≈ a0x; rescaling, we can normalize a to unity to obtain

δht + (xnδhxxx)x = 0; (3.3)

a linear and homogeneous problem. As the initial condition for δh, we can take the leading
order expression c0x

3 of the perturbation to heq in (3.1), which amounts to δh = x3 after
initialization. In addition, we need to supply effective boundary conditions for δh; we
choose

δh(1, t) = 1, δhxx(1, t) = 1, (3.4)

which serves to set effective length and pressure scales for the problem.
The linearized form of the equation of motion for the contact angle (2.2) is

θ̇ = −2(2 + δ)(1 + δ)b, (3.5)

with b once more defined by (2.1), but with θ now representing the deviation of the
contact angle δθ = θ − a0 from its initial value. The validity of these approximations is
tested in Fig. 3 for the critical case n = 3. As the black line, we show a simulation of the
fully nonlinear equation (1.1) with contact angle condition (2.2) and boundary conditions
h(0, t) = 0, hx(1, t) = hxxx(1, t) = 0. This is compared to the linearized equation (3.2),
in which we have also replaced heq by the leading order expansion heq = 2x of the initial
condition. The initial condition of the linearized problem δh(x, 0) = −0.4x3 is derived
from the cubic term of h0(x) = x(2 − x) + 0.1x2(2 − x)2. For early times, excellent
agreement is found, showing that the linearized leading-order approximation (3.3) fully
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captures the initial growth of θ̇. As a result, we will base our analysis of early time
dynamics on (3.3).
To remove unnecessary constants, in our analysis of (3.3) we found it useful to take

the second derivative of (3.3), obtaining an equation for the curvature κ = δhxx of the
perturbation:

κt +
(
x3−δκx

)
xxx

= 0, (3.6)

with initial condition κ = 6x. From (2.1) we find that for small x,

κ =
(2 + δ)(1 + δ)b

δ
xδ + 2

(
c− b

δ

)
, δ ̸= 0, κ = 2b lnx+ 3b+ 2c, δ = 0. (3.7)

Inserting the initial condition into (3.6), we obtain κt = −6(3 + δ)(2 + δ)(1 + δ)xδ, so
that at short times the solution is

κ = 6x− 6(3 + δ)(2 + δ)(1 + δ)xδt.

This means new terms of the form (3.7) are generated immediately, and the contact angle
must change. We can expect a local solution driven by the dynamics of the contact line
alone. If on the other hand δ = 0, κ = 6x − 36t solves (3.6) exactly, and is compatible
with the initial conditions. The dynamics are now driven by the fact that the solution
is no longer compatible with the boundary condition at the other end: a very non-local
process. As a result, the contact angle hardly change initial, since the driving is extremely
weak. We start with the local, generic, case δ ̸= 0.

3.2. The contact angle, δ ̸= 0

We begin with the case where n does not equal the generic value for a liquid film on
a solid substrate. We are looking for similarity solutions of the form κ = tγP (ξ), where
ξ = x/t1/(1+δ), so that (3.6) is satisfied. For large ξ, this solution has to match κ = 6x;
this implies that γ = 1/(1 + δ), so that

∆κ = t1/(1+δ)P (ξ), ξ = x/t1/(1+δ) (3.8)

is the form of the similarity solution, with P (ξ) = 6ξ for large arguments. The similarity
equation becomes

P − ξPξ

1 + δ
+
(
ξ3−δPξ

)
ξξξ

= 0. (3.9)

Four linearly independent solutions P1, P2, P3,and P4 to (3.9) can be found in terms
of generalized hypergeometric functions, as given in appendix A, cf. (A 1)- (A 4); they
are real for ξ > 0. Very similar solutions to an elastic fourth order problem have been
described in (Stone & Duprat 2016). The solutions P2 and P4 are singular at the origin,
and on account of (3.7) have to be excluded. The remaining solutions P1 and P3 grow
exponentially at infinity, while we demand P (ξ) = 6ξ. As shown in detail in appendix A,
we can cancel the exponential growth by superimposing P1 and P3. Different expressions
apply for δ > 0 and for δ < 0, respectively. In summary, the solution to (3.9) satisfying
all required conditions can be written in the form

P (ξ) = P0 (P3(ξ)− rP1(ξ)) , (3.10)

where P0 (cf. (A 6)) is chosen such that (3.10) matches P = 6ξ.
For small ξ, the solution behaves as

P ≈ P0

(
ξδ − r

)
; (3.11)
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Figure 4. Left: numerical results for the exponent of θ̇, based on (3.3), compared to the
analytical result (3.12) (solid line). Right: numerical result for the first term in (3.9) as a function
of ln ξ (black solid line, δ = 0.1) compared to the analytical solution (3.10) (red solid line).

comparing to (3.7), and using (3.5) we find

θ̇ = −2a30δP0t
1−δ
1+δ (3.12)

and

c =
P0

(2 + δ)(1 + δ)
t
1−δ
1+δ − P0r

2
t

1
1+δ . (3.13)

This means that as the drop is set down, the contact angle changes immediately according
to (3.12). This is tested by comparison to numerical simulations of the the linearized
equation (3.3) for n ̸= 3. On the left of Fig. 4, we show the exponent of θ̇. The solid
line is (1− δ)/(1+ δ) as found from (3.12). The symbols are the exponent as found from
numerical simulations. On the right of Fig. 4, the left hand side of (3.9) (as determined
numerically, black solid line), is tested against the analytical solution (3.10) (red solid
line), and perfect agreement is found.

Strictly speaking, the similarity solution (3.10) is only one of an infinite sequence
of solutions of higher order, but which are unstable (Eggers & Fontelos 2015). If the
initial condition happens to be such that the coefficient of x3 vanishes exactly, one must
consider the next order, x4, or an exponent n ⩾ 3 in general. However, an arbitrarily
small perturbation will generate a term proportional to x3, rendering solutions of higher
order unstable. In that case the asymptotic behavior is P ∝ ξn−2, and the (higher-order)
similarity solution is of the form

∆κ = t(n−2)/(1+δ)P (ξ), ξ = x/t1/(1+δ), (3.14)

with similarity equation

(n− 2)P − ξPξ

1 + δ
+
(
ξ3−δPξ

)
ξξξ

= 0. (3.15)

The two solutions with the correct behavior at the origin (given in appendix A, cf. (A 7))
can again be superimposed to generate a solution that behaves like ξn−2 at infinity, as
required.
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4. The contact angle, δ = 0

Let us summarize the situation for the special case n = 3, which corresponds to a
no-slip condition. The linearized equation for δh(x, t) is

δht +
(
x3δhxxx

)
x
= 0, (4.1)

which we are solving with the initial condition δh0(x) = δh(x, 0) = x3. The boundary
conditions are δh(0, t) = 0, δh(1, t) = 1, and δhxx(1, t) = 6.

The linearized equation for δhxx = κ is now

κt +
(
x3κx

)
xxx

= 0, (4.2)

and to leading order near the contact line, δh and δhxx are of the form

δh = θx+ bx2 lnx+ cx2, κ = 2b lnx+ 3b+ 2c, (4.3)

and the equation for the change in contact angle is θ̇ = −4b. Taking into account (4.3),
this constitutes a complete set of boundary conditions. Remember that in the linearized
version, θ corresponds to the deviation of the contact angle from the equilibrium value,
and the initial condition is θ = 0.

A new feature of the case δ = 0 is that there is an exact solution of (4.1) and (4.2):

δhex(x, t) = x3 − 18tx2, κex(x, t) = 6x− 36t, (4.4)

which also satisfies the initial conditions, as well as the boundary condition at the contact
line. However, for t > 0 it violates the boundary conditions δh(1, t) = 1 and δhxx(1, t) =
κ(1, t) = 6 at the right end of the domain. As a result, the dynamics starts from the right
of the domain, and propagates toward the contact line.

It is advantageous, in particular for the numerics, to formulate everything in terms of
the deviations

∆h = δh− δhex, ∆κ = κ− κex, (4.5)

in order to avoid rounding error. Then the equations of motion (4.1), (4.2) remain the
same, as well as the boundary condition at the contact line. On the boundary x = 1, on
the other hand, we now have to satisfy

∆h(1, t) = 18t, ∆hxx(1, t) = 36t. (4.6)

Also, the expansions (4.3) remain valid:

∆h = θx+ bx2 lnx+ cx2, ∆κ = 2b lnx+ 3b+ 2c, (4.7)

except that the constant c has changed its meaning.

Figure 5 illustrates the particular situation in the singular case δ = 0, in which (4.4)
is a solution to the problem, but where the boundary conditions (3.4) are violated. As
a result, a localized “pulse” is created near x = 1, which grows in time. We start by
looking for a similarity solution describing the localized growth of the pulse. There is a
corresponding similarity solution at the contact line x = 0 itself, which is driven by the
pulse. As a result, it is of a much smaller amplitude, not visible on the scale of Fig. 5. We
will call that the contact line solution. We will see that the two solutions do not match
directly, so we need to construct an intermediate solution which connects the two.
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Figure 5. A sequence of profiles ∆κ for times log10 t = −7.5,−7, . . . ,−4, from a numerical
solution of (3.3), with n = 3. A localized “pulse” solution grows at the right boundary, which
excites a “contact line” solution at x = 0, but with an amplitude that is exponentially damped.
The two solutions are connected by an intermediate solution.

4.1. Similarity solution near x = 1: the pulse solution

To understand the origin of the oscillations which are generated at the right end of the
interval, we consider the similarity solution

∆κ = tαϕ(ζ), ζ =
1− x

t1/4
, (4.8)

located at x = 1. The exponent 1/4 follows from (4.2), considering that x ≈ 1, while α =
1/2 follows from δht = −δhxxxx = −∆κxx and δh(1, t) = 18t, so that ∆κxx(1, t) = −18.
We thus have

∆κ = t1/2ϕ(ζ), ζ =
1− x

t1/4
, (4.9)

where ϕ satisfies the similarity equation

ϕ

2
− ζϕ′

4
+ ϕiv = 0. (4.10)

Four linearly independent solutions ϕ1, ϕ2, ϕ3, and ϕ4 are given in (B 1); of them, ϕ3
does not satisfy ϕ(0) = 0, required to conform with the boundary condition κ(1, t) = 6,
and drops out. In addition, we want ϕ to decay at infinity. As explained in more detail
in appendix B, the ratio between the two remaining hypergeometric functions is fixed to
r =

√
2π/(24Γ 2(3/4)), so that the exponential growth cancels. In a second step, we fix

the amplitude of ϕ3 to r1 = π/(4Γ (3/4)) to remove the term growing quadratically at
infinity. The remaining combination then decays exponentially at infinity. This leaves us
with the solution

ϕ = A

[
ζ1F3

(
−1

4
;
1

2
,
3

4
,
5

4
,
ζ4

256

)
+

√
2π

24Γ 2
(
3
4

)ζ31F3

(
1

4
;
5

4
,
3

2
,
7

4
,
ζ4

256

)
− r1ζ

2

]
, (4.11)

which behaves like ϕ ≈ Aζ − r1ζ
2 for small ζ. To finally fix A we observe that the

boundary condition at x = 1 is −18 = ∆κxx(1, t) = ϕ′′(0) = −2Ar1, from which A =
9/r1 = 36Γ (3/4)/π ≈ 14.0422. This fixes all parameters of the pulse solution (4.11),
which is shown as the dashed line in Fig. 6. Clearly, very good agreement with numerical
simulation is found, without an adjustable parameter.
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⇣

Figure 6. The profile ϕ as found from computing ∆κ, rescaled according to the similarity
solution (4.9), for t = 3.2 · 10−8 (black line) and t = 10−7 (red line). The dashed line is the
solution (4.11).

To understand the behavior for large ζ (away from the corner), we make the WKB
ansatz ϕ ∝ eS(ζ). Inserting into (4.10), to leading order we get −ζS′/4 + S′4 = 0, or

S′ =

(
ζ

4

)1/3





1

−1/2 +
√
3i/2

−1/2−
√
3i/2

,

where the last two solutions are the relevant case which decays for large ζ. Integrating,
we obtain

S1/2 = S0 −
3ζ4/3

2 · 44/3 (1±
√
3i). (4.12)

To capture algebraic corrections, we need to go to next order:

S′ =

(
ζ

4

)1/3
(
−1

2
±

√
3i

2

)
+ ϵ ≡ P + ϵ,

for which the leading terms in (4.10) are

1

2
− ζS′

4
+ S′4 + 6S′′S′2 = 0,

so that ϵ = −4/(3ζ). The complex roots can be combined to cosine and sine modes, so
that the asymptotic solution finally becomes

ϕ ≈ Apζ
−4/3e

− 3ζ4/3

2·44/3 cos

(
33/2ζ4/3

2 · 44/3 − ϕp

)
. (4.13)

Here ϕp = 0.561 is a phase factor, and the amplitude is Ap = 3.6599A ≈ 51.39316, both
found numerically, based on a numerical evaluation of (4.11), using MAPLE. This means
that ∆p near the right end of the domain is

∆κ ≈ Apt
1/2ζ−4/3 exp

[
− 3ζ4/3

2 · 44/3
]
cos

(
33/2ζ4/3

2 · 44/3 − ϕp

)
. (4.14)
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4.2. Similarity solution near the contact line

Note that (4.12) implies

S1/2 ∝ (1±
√
3i)

(1− x)4/3

t1/3
, (4.15)

which suggests a similarity solution of the form

∆κ = e−
µ

αtαA(ξ), ξ =
x

t1+α
, (4.16)

where µ is expected to be complex, and α real. We will find α = 1/3 corresponding to
(4.12), but will at first continue the calculation for general α; note that A is also complex.

Inserting (4.16) into (4.2) we obtain

µA− (1 + α)tαξA′ +
(
ξ3A′)′′′ = 0,

which for α > 0 and t→ 0 simplifies to

µA+
(
ξ3A′)′′′ = 0. (4.17)

Of the four solutions to (4.17) given in (C 1), A3 and A4 are singular at the origin, and
are therefore excluded. Instead, we are looking for solutions which are consistent with
(4.3) at the origin.
As shown in Appendix C, the leading-order exponential behavior of the remaining two

solutions is

A1 ∼ e4i(−µ)1/4ξ1/4 , A2 ∼ e4(−µ)1/4ξ1/4 . (4.18)

We will see by matching to the intermediate solution that only A1 has the correct behavior
at infinity, and thus is the only solution to be considered. Its asymptotic behavior at the
origin can be evaluated very efficiently using Barnes-type integral representations, as
detailed in Appendix C, and resulting in

A1 = − ln(−µξ)
2

+
5

4
− 2γ +O(ξ, ξ ln ξ), (4.19)

at leading order.

4.3. The intermediate solution

We are still missing an intermediate solution which connects the solution (4.16) with
A given by (C 4), to the pulse solution (4.9) with ϕ given by (4.11). In the process, we
hope to find the parameters α, µ of the contact line solution. On the one hand, the tail

of the pulse solution (4.15) has a space dependence e(1−x)4/3 , while on the other hand

(4.18) implies ex
1/4

, which clearly is not the same.
The required solution, which fits both asymptotic behaviors, is given by

∆κ = eS , S = −G(x)
t1/3

, (4.20)

as we will show now; the exponent t1/3 in the denominator is motivated by (4.15). Taking
S to be of order t−1/3 and x to be of order one, the leading order expression is

St + x3S4
x = 0, (4.21)

and so the equation for G becomes

G

3
+ x3G4

x = 0, (4.22)
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Figure 7. A solution of (4.1) at ln t = −16,−14,−12,−10,−8. Plotted are the maxima of ∆p
as function of their locations. For earlier times, the profiles converge toward the amplitude of

the intermediate solution (4.24), which is 3
(
1− x1/4

)4/3

.

whose solution with boundary condition G(1) = 1 is

G = 3(−1)1/3
(
1− x1/4

)4/3
, (4.23)

and the roots are to be taken appropriately.
Near x = 1 let us put x = 1− s, so that for s≪ 1

G ≈ 3(−1)1/3
(s
4

)4/3
,

which has to match the leading order behavior (4.12), which implies

G ≈ 3

2 · 44/3
(
1±

√
3i
)
s4/3.

Clearly, if the roots (−1)1/3 = (1 ±
√
3i)/2 are selected, this is an exact match, so that

now the solution in the intermediate region becomes

G =
3

2

(
1±

√
3i
)(

1− x1/4
)4/3

. (4.24)

This result is tested in Fig 7, by plotting ∆κ, multiplied by t1/3. For simplicity, we
disregard the oscillations, by plotting maxima of ∆κ only, as function of the maximum
position. Thus the real part of (4.24) is plotted as the dashed line, which agrees progres-
sively for earlier times.
Now for x → 0, (4.24) must match the large-ξ behavior of (4.18). The former limit

leads to

ln∆κ ∼ −3

2

(
1±

√
3i
) 1− 4x1/4/3

t1/3
,

while the latter, using (4.18), gives

ln∆κ ∼ − µ

αtα
+ 4i(−µ)1/4 x1/4

t(1+α)/4
.
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It is straightforward to confirm that if we identify

α =
1

3
, µ =

1 +
√
3i

2
, (4.25)

the two expressions become identical, having used that (−µ)1/4 = (
√
3− i)/2. To avoid

confusion, we have chosen the plus sign for µ. However, since (4.17) is a real equation,
replacing µ by its complex conjugate yields another solution. While A1 grows at the

exponential rate e2ξ
1/4

, A2 grows at the faster rate e2
√
3ξ1/4 , and therefore does not

match.
To summarize, the contact line solution is

∆κ = e
− 3(1+

√
3i)

2t1/3 A1(ξ), ξ =
x

t4/3
, (4.26)

with A1 = MeijerG([[], []], [[0, 0], [−2,−1]],−µξ), together with its complex conjugate.
Equation (4.17) is valid under the assumption that t1/3ξAξ ≪ A. Using (4.18), this
implies ξ ≪ t−4/3, or x small. On the other hand, the validity of the intermediate
solution relies on G′4/t4/3 being small in comparison to G′2G′′/t. In other words, x must
be greater than t4/3, so clearly there is an overlap for t→ 0.
The physical (real valued) solution based on (4.26) must be a linear superposition of

real and imaginary parts. Thus putting A1 = Ar + iAi, we obtain

∆κ = e−3/(2t1/3)

[
ϵ1

(
cos

(
3
√
3

2t1/3

)
Ar + sin

(
3
√
3

2t1/3

)
Ai

)
+ ϵ2

(
cos

(
3
√
3

2t1/3

)
Ai − sin

(
3
√
3

2t1/3

)
Ar

)]
.

(4.27)
Now with (4.25), ln(−µ) = −2πi/3, and so for small ξ

Ar = − lnx

2
+

5

4
− 2γ +

2

3
ln t, Ai =

π

3
,

where γ is Euler’s constant. This yields

θ̇ = e−3/(2t1/3)

[
ϵ1 cos

(
3
√
3

2t1/3

)
− ϵ2 sin

(
3
√
3

2t1/3

)]
, (4.28)

where ϵ1 and ϵ2 remain to be determined. In order to do that, we have to go to next
order in the expansion. The reason is that prefactors can be interpreted as logarithmic
corrections in the exponential, but which are subdominant, and require a higher order
result.

4.4. The next order

To find the remaining amplitudes ϵ1 and ϵ2, we need to continue to the next order.
So far we have accounted for the exponential terms, but want to capture the terms from
(4.13) and (4.18) which only grow algebraically. In the spirit of (4.20), we now try the
generalized ansatz (with G given by (4.24)):

S = G(x)t−1/3 +G1(x) + g1 ln t+ g2 lnx+ g3 ln(1− x). (4.29)

The constants g1, g2, and g3 are to be adjusted to match the required power laws.
Namely, the large-ξ expansion of A1 (cf. (4.18)) amounts to

Sin = 2
(
1±

√
3i
) x1/4
t1/3

− 9

8
lnx+

3

2
ln t+ const, (4.30)
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while for small s = 1− x the pulse solution yields

Sout = −3
(
1±

√
3i
)

2 · 44/3
s4/3

t1/3
− 4

3
ln s+

5

6
ln t. (4.31)

Comparing to (4.29), and matching to ln t and ln s in the expansion for small s, we
find g1 = 5/6 and g3 = −4/3; matching to lnx in the expansion for small x, we find
g2 = −9/8. Notice there is a mismatch in the contribution from ln t, so (4.16) needs to
be multiplied by t−2/3, so that 3/2−2/3 = α as required. This change does not alter the
leading order equation (4.17), but changes only the next order.

To make everything consistent, (4.21) has to supplemented with terms of order t−1,
leading to

St + x3
(
S4
x + 6S2

xSxx

)
+ 9x2S3

x = 0. (4.32)

Inserting (4.29) into (4.32), at order t−1 we have

4(1 +G′
1)x

5/4 −G′
1x

9/4 + x(x− 1)G′
1 −

4x

3
+
x1/4

3
= 0,

which can be integrated to give

G1 =
4

3
ln
(
1 + x1/4 + x1/2 + x3/4

)
+ const

This finally leads to

∆κ = Amede
− 3

2 (1±
√
3i) (1−x1/4)4/3

t1/3
1 + x1/4 + x1/2 + x3/4

x9/8(1− x)4/3
t5/6 (4.33)

in the intermediate region, where Amed is an amplitude to be determined. To recall,
(4.33) solves (4.32) and matches inner and outer regions (4.30) and (4.31), respectively,
once a correction −2 ln t/3 has been added to the inner solution. This means to leading
order the inner solution is now∆κ = t−1/2e−

µ
αtαA(ξ) instead of (4.16). This will generate

an additional term in (4.17), which is proportional to t1/3. This motivates the ansatz to
include a term of next order into the inner solution:

∆κ = e−3µ±t−1/3
[
t−2/3A(ξ) + t−1B(ξ)

]
. (4.34)

At leading order, this yields (4.17), as before; at the next order, we have

−2A

3
− 4ξA′

3
+ µB +

(
ξ3B′)′′′ = 0, (4.35)

which needs to be solved for B, if the next order is required.

4.5. Matching

Finally we want to calculate the missing coefficients in the expression (4.28) for θ̇,
also including the correction t−2/3 from (4.34). We do that by matching the missing
amplitudes and phases of the successive regions, starting from (4.14). First, the limit of
the intermediate solution (4.33) for s→ 0 (toward the right end) is

∆κ = 4Amede
− 3

2 (1±
√
3i)(ζ/4)4/3s−4/3t5/6, ζ =

1− x

t1/4
;
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Figure 8. The change in contact angle θ̇ as obtained from a numerical simulation
of (4.1) (solid line), compared to the prediction (4.40); a best fit (symbols) gives

t2/3e3/(2t
1/3)θ̇ = −42.6 cos

(
3
√
3

2t1/3
− 0.4625

)
.

comparison to (4.13) yields Amed = Ap/4, and including the phase factor we have for the
real version of the intermediate solution

∆κ =
Ap

4

1 + x1/4 + x1/2 + x3/4

x9/8(1− x)4/3
t5/6e

− 3
2

(1−x1/4)4/3

t1/3 cos

(
3
√
3

2t1/3

(
1− x1/4

)4/3
− ϕp

)
.

(4.36)
Thus the expression for the overlap region between (4.36) and (4.14) is

∆κ =
Apt

5/6

s4/3
e
− 3ζ4/3

2·44/3 cos

(
3
√
3ζ4/3

2 · 44/3 − ϕp

)
. (4.37)

In the opposite limit x → 0 (near the contact line), the intermediate solution (4.36)
becomes (note that f(x) ≈ x−9/8):

∆κ =
Ap

4
x−9/8t5/6e

− 3

2t1/3
(1−4x1/4/3)

cos

(
3
√
3

2t1/3

(
1− 4

3
x1/4

)
− ϕp

)
. (4.38)

Now (4.38) can be compared to the large-ξ limit of (4.27), but including the factor
t−2/3 implied by the leading order contribution to (4.27). This shows that ϵ1 = ϵ cosϕp
and ϵ2 = −ϵ sinϕp, with ϵ = −√

πApt
−2/3/

√
2. Inserting this into (4.27), including the

factor of t−2/3, we arrive at the complete solution for the contact line region:

∆κ = −
√
π

2

Ap

t2/3
e−3/(2t1/3)

[
cos

(
3
√
3

2t1/3
− ϕp

)
Ar + sin

(
3
√
3

2t1/3
− ϕp

)
Ai

]
, (4.39)

where

Ar + iAi = MeijerG

(
[[], []], [[0, 0], [−2,−1]],− (1 +

√
3i)ξ

2

)
, ξ =

x

t4/3
.

Now we can deduce the change in contact angle by taking the small-ξ limit of (4.39),
keeping the logarithmically diverging terms only, to obtain

∆κ ≈ Ap
√
π

2
√
2
t−2/3e−3/(2t1/3) cos

(
3
√
3

2t1/3
− ϕp

)
lnx ≡ 2b lnx.
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Figure 9. Left: The constant c, as defined in (5.3), as a function of λ. Zeroes determine the
eigenvalues - the first two are shown, with λ1 = 8.19 and λ2 = 38.4, based on V = 2/3. Right:
the first eigenfunction G1(x), corresponding to λ1.

According to (3.5), θ̇ = −4b, and thus

θ̇ = −Ap
√
π√

2
t−2/3e−3/(2t1/3) cos

(
3
√
3

2t1/3
− ϕp

)
, (4.40)

which is the final desired equation of motion for the contact angle. In Fig. 8 the functional
form of (4.40) is compared to numerical solutions of the linearized problem (4.1), from
which θ̇ is obtained; almost perfect agreement is found. Using that Ap = 51.39 as found
from the pulse solution, the predicted prefactor is 64.4, while a prefactor of 42.6 is found
numerically. The slight disagreement comes from the fact that convergence is slow, so
t ∼ 10−4 is not yet asymptotic. Accessing earlier times numerically is difficult, since this
would require an even greater range of spatial scales to be resolved with great accuracy.
The observed phase factor of 0.4625 is also in reasonable agreement with the prediction
of ϕp = 0.561, once more found from the pulse solution.

5. Long time evolution

We investigate small perturbations to (2.3), in order to describe the relaxation toward
the equilibrium shape:

h = heq + ϵe−λtG(x). (5.1)

Inserting into (1.1) and linearizing results in ϵ we find the eigenvalue equation

λG =
(
h3eqGxxx

)
x
, (5.2)

an ODE of fourth order. We need to find a solution to (5.2) that satisfies the boundary
condition G(0) = 0. Solving (5.2) by shooting, we use the initial conditions G(1) = 1 (a
normalization), G′(1) = G′′′(1) = 0 (symmetry), and G′′(1) = ψ, where ψ is a shooting
parameter. For a generic value of ψ, G behaves like

G ≈ d lnx+ c− dλx ln2 x/2 + (d− c)λx ln(x) + . . . , (5.3)

near x = 0, as found by expanding G in x and lnx.
To find the eigenfunction, we first adjust ψ such that the diverging term d lnx

disappears, which is done by demanding that G′x → 0 for x → 0. Next, we plot G(0)
or c as a function of λ, see the left of Fig. 9; the condition c = G(1) = 0 determines the
eigenvalue, since this is the boundary condition G has to satisfy at the contact line. We
have chosen V = 2/3, the result for arbitrary volume is found from rescaling. On the left
of Fig. 9, the range of λ shown includes the first two zeroes of G(0), corresponding to
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the first two eigenvalues. On the right of Fig. 9, we show the first eigenfunction G1(x),
corresponding to λ1 = 8.19. Clearly, the eigenvalue scales with V 3, so that the decay
exponent in Fig.2 is

λ = (3V/2)3λ1 = (6h̄/π)3λ1 = 0.057.

The resulting decay law θ̇ ∝ e−t/λ (with the prefactor adjusted) is shown as the dashed
line, and fits the observed decay (solid line) very well.
From (5.1) if follows that θ̇ = −ϵλG′(0)e−λt. Since G′

1(0) ≈ −14.05 is finite, it follows
that the contact angle is changing as t → ∞. Alternatively, θ̇ can be calculated from
(2.2). With the coefficients c, d in (5.3) having been made to vanish, the local expansion
of G1 becomes

G1(x) = ax+
aλ1
4
x2 lnx+ . . . .

As shown on the left of Fig.9, the next eigenvalue λ2 is significantly larger than λ1, so
the first eigenvalue will dominate for times of order unity.

6. Discussion

The problem considered in this paper was motivated originally by discussions at the
workshop “Analysis and numerics of nonlinear PDEs: degeneracies & free boundaries”,
held in 2023 at the Lorentz center in Leiden (Gnann et al. 2023). The aim was to find a
mathematical framework for the contact line paradox which concludes that in the case of
the standard formulation of fluid mechanics, with no slip at solid boundaries, a contact
line cannot move (Huh & Scriven 1971; Dussan V. & Davis 1974). In (1.1), and of course
allowing for the thin film approximation being applicable, this means that n = 3. On
dimensional grounds, any other exponent requires the existence of another length scale,
such as a slip length.
The argument (Giacomelli et al. 2023) proceeds from assuming a (potentially mobile)

contact line at position s(t), where h(x, t) satisfies the boundary conditions

h(s, t) = 0, hx(s, t) = 1; (6.1)

the contact angle has been normalized to unity. Then contact line motion consistent with
(1.1) must satisfy

lim
x→s

hn−1hxxx = ṡ(t). (6.2)

Now assume a classical solution to (1.1) with n = 3 and boundary conditions (6.1), with
contact line motion defined by (6.2). It follows that ṡ = 0; we show this by contradiction.
Assume that on the contrary ṡ ̸= 0. Then since h ≈ x′ = x− s near the contact line, we
have hxxx ≈ ṡ/x′2. Integrating, it follows that hx ≈ −ṡ lnx′, which contradicts hx(s) = 1.
Thus our assumption of ṡ ̸= 0 must have been incorrect, and we have shown that ṡ = 0
instead. Note that we have not used the equation of motion (1.1) to reach this conclusion.
In other words, for n = 3 the contact line is effectively pinned, even though we have not

introduced explicit pinning forces. Thus we can conclude from our results (e.g. (4.40))
that the contact angle will change instantaneously, unless the initial condition is an
equilibrium profile. But since we also have to satisfy the second condition of (6.1), which
fixes the contact angle, we see that there are too many boundary conditions to be satisfied.
This means the contact line problem with n = 3 is ill-posed, and there is no solution.
This result is fascinating, in that it implies that a pure continuum description, which
does not introduce a microscopic length scale, is inherently inconsistent, regardless of
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any experimental evidence for the motion of contact lines. This comes as close as one
possibly can to proving the existence of atoms by purely mathematical means!
A remaining question is what might be a convenient method to observe the motion of

pinned drops as described here. Placing the drop on a substrate might result in a rather
ill-controlled initial state. By contrast, using electrical forces to move drops already on
the substrate might be a more convenient way, including the use of electrically tunable
defects to trap a drop initially (’t Mannetje et al. 2014).
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Appendix A. The local solution, δ ̸= 0

The four linearly independent solutions of (3.9) are

P1 = 1F3

(
− 1

1 + δ
;

1

1 + δ
,

3

1 + δ
,

2

1 + δ
,

ξ1+δ

(1 + δ)4

)
, (A 1)

P2 = 1F3

(−2 + δ

1 + δ
;

δ

1 + δ
,

2δ

1 + δ
,
2 + δ

1 + δ
,

ξ1+δ

(1 + δ)4

)
ξδ−1, (A 2)

P3 = 1F3

(−1 + δ

1 + δ
;
2 + δ

1 + δ
,
1 + 2δ

1 + δ
,
3 + δ

1 + δ
,

ξ1+δ

(1 + δ)4

)
ξδ, (A 3)

P4 = 1F3

(−3 + δ

1 + δ
;

δ

1 + δ
,
−1 + 2δ

1 + δ
,
−1 + δ

1 + δ
,

ξ1+δ

(1 + δ)4

)
ξδ−2, (A 4)

only P1 and P3 being compatible with (3.7). We will assume δ > 0 for the following
calculation; the opposite case is similar.
Using contour integration in the complex plane, we can express our functions by means

of Barnes-type integrals:

P1 =
1

2πi

Γ ( 1
1+δ )Γ (

2
1+δ )Γ (

3
1+δ )

Γ (− 1
1+δ )

∫ −ε+i∞

−ε−i∞

Γ (s− 1
1+δ )Γ (−s)

Γ (s+ 1
1+δ )Γ (s+

2
1+δ )Γ (s+

3
1+δ )

(
− ξ1+δ

(1 + δ)4

)s

ds

−e 1
1+δπi

Γ ( 1
1+δ )

Γ ( 4
1+δ )

ξ

(1 + δ)
4

1+δ

,

P3 =
1

2πi

Γ ( 1+2δ
1+δ )Γ (

2+δ
1+δ )Γ (

3+δ
1+δ )

Γ (−1+δ
1+δ )

∫ −ε+i∞

−ε−i∞

Γ (s+ −1+δ
1+δ )Γ (−s)

Γ (s+ 1+2δ
1+δ )Γ (s+

2+δ
1+δ )Γ (s+

3+δ
1+δ )

(
− ξ1+δ

(1 + δ)4

)s

ξδds

−e 1−δ
1+δ πi

Γ ( 1+2δ
1+δ )Γ (

2+δ
1+δ )Γ (

3+δ
1+δ )

Γ ( 2+δ
1+δ )Γ (

3
1+δ )Γ (

4
1+δ )

ξ

(1 + δ)4
1−δ
1+δ

.

The two solutions can be combined in the form

P3 − rP1 = ℜ(P3 − rP1) =

ℜ
(
−e 1−δ

1+δ πi
Γ ( 1+2δ

1+δ )Γ (
2+δ
1+δ )Γ (

3+δ
1+δ )

Γ ( 2+δ
1+δ )Γ (

3
1+δ )Γ (

4
1+δ )(1 + δ)4

1−δ
1+δ

+ re
1

1+δπi
Γ ( 1

1+δ )

Γ ( 4
1+δ )(1 + δ)

4
1+δ

)
ξ + ℜ(Q3 − rQ1),
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where

Q1 =
Γ ( 1

1+δ )Γ (
2

1+δ )Γ (
3

1+δ )

2πiΓ (− 1
1+δ )

∫ −ε+i∞

−ε−i∞

Γ (s− 1
1+δ )Γ (−s)

Γ (s+ 1
1+δ )Γ (s+

2
1+δ )Γ (s+

3
1+δ )

(
− ξ1+δ

(1 + δ)4

)s

ds,

Q3 =
Γ ( 1+2δ

1+δ )Γ (
2+δ
1+δ )Γ (

3+δ
1+δ )

2πiΓ (−1+δ
1+δ )

(1 + δ)
4δ

1+δ

∫ −ε+i∞

−ε−i∞

eπi
δ

1+δ Γ
(
s− 1

1+δ

)
Γ (−s+ δ

1+δ )

Γ (s+ 1)Γ (s+ 2
1+δ )Γ (s+

3
1+δ )

(
− ξ1+δ

(1 + δ)4

)s

ds.

By choosing

r =
−2δΓ 2( δ

1+δ ) (1 + δ)
4δ

1+δ

(2− δ)(1− 2δ)Γ (−1+δ
1+δ )Γ ( 1−2δ

1+δ )
, (A 5)

we have

Q3 − rQ1 =
1

2πi

Γ ( 1
1+δ )Γ (

2
1+δ )Γ (

3
1+δ )

Γ (− 1
1+δ )

×

∫

C

Γ (s− 1
1+δ )

Γ (s+ 2
1+δ )Γ (s+

3
1+δ )

[
eπi

δ
1+δ Γ (−s+ δ

1+δ )

Γ (s+ 1)
− Γ (−s)
Γ (s+ 1

1+δ )

](
− ξ1+δ

(1 + δ)4

)s

ds,

where the term in brackets has good decay properties at infinity owing to

Γ (−s)Γ (s+ 1) = − π

sin(πs)
, Γ (−s+ δ

1 + δ
)Γ (s+

1

1 + δ
) = − π

sin(π(s− δ
1+δ ))

,

so that ℜ(Q3 − rQ1) is bounded.
Finally, the slope of the linear behavior is found to be

sl = ℜ(sl) = −
Γ ( 1+2δ

1+δ )Γ (
2+δ
1+δ )Γ (

3+δ
1+δ )

Γ ( 3
1+δ )Γ (

4
1+δ )

1

(1 + δ)4
1−δ
1+δ

ℜ
(

Γ (− 1
1+δ )

Γ (−1+δ
1+δ )Γ ( 2

1+δ )
e

1
1+δπi − e

1−δ
1+δ πi

1

Γ ( 2+δ
1+δ )

)
,

from which we find

P0 =
6 · 16 1

1+δ

(
1− cos

(
2π(2+δ)

1+δ

))
Γ
(

5+δ
2+2δ

)
Γ
(

3
1+δ

)
Γ
(

2+δ
1+δ

)

δπ
3
2 (1 + δ)

δ−7
1+δ

(
sin
(

π
1+δ

)
+ 6 sin

(
πδ
1+δ

)
− sin

(
π(1+2δ)

1+δ

)) . (A 6)

For general n, the two solutions to (3.15) with the correct behavior at infinity are

P1 = 1F3

(
−n− 2

1 + δ
;

1

1 + δ
,

3

1 + δ
,

2

1 + δ
,

ξ1+δ

(1 + δ)4

)
,

P3 = 1F3

(
2 + δ − n

1 + δ
;
2 + δ

1 + δ
,
1 + 2δ

1 + δ
,
3 + δ

1 + δ
,

ξ1+δ

(1 + δ)4

)
ξδ. (A 7)

The remaining calculation can be done similarly to the above.

Appendix B. The pulse solution, δ = 0

Any solution to (4.10) can be written as a linear superposition of the four solutions

ϕ1 = 1F3

(
−1

4
;
1

2
,
3

4
,
5

4
,
ζ4

256

)
ζ, ϕ2 = 1F3

(
−1

4
;
5

4
,
3

2
,
7

4
,
ζ4

256

)
ζ3,

ϕ3 = 1F3

(
−1

2
;
1

4
,
1

2
,
3

4
,
ζ4

256

)
, ϕ4 = ζ2, (B 1)
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where pFq denotes the generalized hypergeometric function. Writing ϕ1 = ζP1 and ϕ2 =
ζ3P2, the first two solutions can be represented as integrals:

P1 =
1

2πi

Γ
(
1
2

)
Γ
(
3
4

)
Γ
(
5
4

)

Γ
(
− 1

4

)
∫

L1

Γ
(
− 1

4 − s
)

Γ
(
1
2 − s

)
Γ
(
3
4 − s

)
Γ
(
5
4 − s

)Γ (s)
(
−
(
ζ

4

)4
)−s

ds,

where L1 separates the poles of Γ
(
− 1

4 − s
)
and Γ (s), and

P2 =
1

2πi

Γ
(
5
4

)
Γ
(
3
2

)
Γ
(
7
4

)

Γ
(
1
4

)
∫

L2

Γ
(
1
4 − s

)

Γ
(
5
4 − s

)
Γ
(
3
2 − s

)
Γ
(
7
4 − s

)Γ (s)
(
−
(
ζ

4

)4
)−s

ds,

where L2 separates the poles of Γ
(
1
4 − s

)
and Γ (s).

We observe that

ζ2P2 = 16
1

2πi

Γ
(
5
4

)
Γ
(
3
2

)
Γ
(
7
4

)

Γ
(
1
4

)
∫

L2

Γ
(
1
4 − s

)

Γ
(
5
4 − s

)
Γ
(
3
2 − s

)
Γ
(
7
4 − s

)Γ (s)
(
−
(
ζ

4

)4
)−s+ 1

2

ds

= 16
1

2πi

Γ
(
5
4

)
Γ
(
3
2

)
Γ
(
7
4

)

Γ
(
1
4

)
∫

L1

Γ
(
− 1

4 − s
)

Γ
(
3
4 − s

)
Γ (1− s)Γ

(
5
4 − s

)Γ (s+ 1

2
)

(
−
(
ζ

4

)4
)−s

ds,

so that we can combine the two solutions as

P1 − rζ2P2 =
1

2πi

Γ
(
1
2

)
Γ
(
3
4

)
Γ
(
5
4

)

Γ
(
− 1

4

) ×

∫

L

Γ
(
− 1

4 − s
)

Γ
(
3
4 − s

)
Γ
(
5
4 − s

)
[

Γ (s)

Γ
(
1
2 − s

) − 6r
Γ
(
− 1

4

)

Γ
(
1
4

) Γ (s+ 1
2 )

Γ (1− s)

](
−
(
ζ

4

)4
)−s

ds.

The parameter

r =
Γ
(
1
4

)

6Γ
(
− 1

4

) =

√
2π

24Γ 2
(
3
4

) (B 2)

has to be chosen such that the square brackets cancel for s → ±i∞. To find the linear
behavior of the resulting expression for large ζ, we calculate the residual of the integral
at the pole s = −1/4 to yield

P1 − rζ2P2 ∼ − 4π

Γ
(
− 1

4

) ζ
4
=

π

Γ
(
3
4

) ζ
4
, as ζ → ∞.

Appendix C. The contact line solution solution, δ = 0

Four linearly independent solutions of (4.17) are

A1 = MeijerG([[], []], [[0, 0], [−2,−1]],−µξ), A2 = 0F3(1, 2, 3,−µξ),
A3 = MeijerG([[], []], [[−1, 0, 0], [−2]],−µξ), A4 = MeijerG([[], []], [[−2,−1, 0, 0], []],−µξ).

(C 1)

For simplicity, in the following we assume that µ = (1 + i
√
3)/2. Then the asymptotic

behavior of A2 for large ξ is

A2 ≈ − 1− i

4π3/2
e−4iµξ1/4ξ−9/8. (C 2)
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Including corrections, the asymptotic behavior of A1 is

A1 ≈ −
√
2

4
√
π
e4µξ

1/4

ξ−9/8

[
1− 39

32
µ̄ξ−1/4 − 1593

2048
µξ−1/2 +O(ξ−3/4)

]
. (C 3)

Note that the current implementation of Mathematica, as well as the documentation,
contains an erroneous factor of 1/2 relative to (C 3). This is confirmed against the theory
presented in (Braaksma 1962); in the notation of this paper, we have q = 4, p = 0,m = 2,
and n = 0. Using Theorem 12 and (4.13) of (Braaksma 1962), we find

A1 ∼ λ−2E(z) ∼ λ−2A0(4
4z)−9/8e4z

1/4

,

where λ−2 and A0 follow from (11.17) and (3.28), respectively, to give

A1 ∼ (2πi)2e3πi45

4(2πi)(2π)3/2(44z)9/8
e4z

1/4

.

Now putting z = −µξ, we confirm the leading term of (C 3). We have also checked against
the numerical implementations of the MeijerG functions in Mathematica and in Maple.
To find the asymptotic behavior for small ξ, we note that the MeijerG functions can

be written as Mellin transforms, so that the first solution of (C 1) (the only one relevant
to our solution), can be written as

A1(ξ) =
1

2πi

∫
Γ 2(s)

Γ (2− s)Γ (3− s)
(−µξ)−sds. (C 4)

On the basis of this representation, an asymptotic description can be found using the
residue theorem (with a ≡ −µξ):

A1(ξ) =

∞∑

n=0

Res

(
Γ 2(s)a−s

Γ (2− s)Γ (3− s)
, s = −n

)
=

∞∑

n=0

anRes

(
Γ 2(s′ − n)a−s′

Γ (2 + n− s′)Γ (3 + n− s′)
, s′ = −0

)
,

which has the form of an expansion for small a. On account of the Γ function factors,
the series is convergent for all a.
By contrast, the corresponding integral representations for A3 and A4 show that A3 ∼

ξ−1, and A4 ∼ ξ−2; they are singular at the origin and thus do not need to be considered.
Now A1 is of the form

A1 =

∞∑

n=0

an (c0(n) + c1(n) ln a) , (C 5)

with

c0 =
4(2 + n)2(1 + n)

[(
n3 + 3n2 + 2n

)
Ψ(n) + 7n2/4 + 17n/4 + 2

]

nΓ 4(3 + n)
,

and c1 = −(1 + n)2(2 + n)3/Γ 4(3 + n). The contribution proportional to ln a can be
summed to give

∞∑

n=0

anc1(n) = −1

2
F(1, 2, 3, a) = −1

2
A2.

Evaluating the sum up to second order, we find

A1 =
5

4
− 2γ − ln a

2
− a

24

(
−32

3
+ 8γ + 2 ln(a)

)
+O(a2, a2 ln a). (C 6)
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