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Abstract: The Berry–Tabor conjecture asserts that local statistical measures of the
eigenvaluesλj of a “generic” integrable quantum system coincide with those of a Poisson
process. We prove that, in the case of a rectangle billiard with random ratio of sides,
the sumN−1/2∑

j≤N exp(2πi λjτ ) behaves forτ random andN large like a random
walk in the complex plane with a non-Gaussian limit distribution. The expectation value
of the distribution is zero; its variance, which is essentially the average pair correlation
function, is one, in accordance with the Berry–Tabor conjecture, but all higher moments
(≥ 4) diverge. The proof of the existence of the limit distribution uses the mixing property
of a dynamical system defined on a product of hyperbolic surfaces. The Berry–Tabor
conjecture and the existence of the limit distribution for afixedgeneric rectangle are
related to an equidistribution conjecture for long horocycles on this product space.
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1. Introduction

Let λ1 ≤ λ2 ≤ λ3 ≤ . . . → ∞ be a sequence of numbers satisfying

#{j : λj ≤ λ} ∼ λ, λ → ∞, (1)

which means that the average spacing between adjacent levels is asymptotically unity.
One quantity measuring the “randomness” of the deterministic sequence{λj}j is the
consecutive level spacing distribution, which is defined by

P (s,N ) =
1
N

N∑
j=1

δ(s− λj+1 + λj), (2)

whereδ(x) is the Dirac mass. The limit distribution ofP (s,N ) forN → ∞ (if it exists)
shall be denoted byP (s). That is, for any sufficiently nice test functionh,

lim
N→∞

∫ ∞

0
P (s,N )h(s) ds =

∫ ∞

0
P (s)h(s) ds. (3)

Berry and Tabor conjectured [5] that, when the sequence{λj}j is a sequence of eigen-
values of a quantum Hamiltonian, whose classical dynamics is integrable, then the limit
distributionP (s) should in general coincide with the one for a random sequence gener-
ated by a Poisson process, i.e.,

PPoisson(s) = exp(−s).
This is particularly interesting, because the limit distribution for systems, which are not
integrable but chaotic, is expected to be the Gaudin distribution for the eigenvalues of
random matrices [18], which is approximately described by Wigner’s surmise. For the
GUE ensemble, say, it reads

PGUE(s) ≈ 32
π2
s2 e− 4

π s
2

.

Obvious examples for “non-generic” integrable systems, which violate the Berry–
Tabor conjecture, are two-dimensional harmonic oscillators, as was already noted by
Berry and Tabor [5] and later studied in more detail by Pandey et al. [49], Bleher [7, 8]
and Greenman [32].1

Further negative examples are Zoll surfaces, where, like on the sphere, all geodesics
are closed and have the same length. In the case of the sphere the eigenvalues of the
(negative) Laplacian−1 are (after rescaling)El,m = l(l + 1),m = −l, . . . , l, hence

1 The spacings of two-dimensional harmonic oscillators are directly related to the spacings between the
fractional parts of the sequencenθ, which had been studied earlier, see [60] for a survey.
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with multiplicity 2l + 1. Label these numbers in increasing order byλ1, λ2, . . . ; due to
the high multiplicity one thus has

P (s) = δ(s). (4)

The same result holds for all other Zoll surfaces where the eigenvalues are extremely
clustered around the valuesl(l+1), compare Duistermaat and Guillemin [26], Weinstein
[65], Colin de Verdìere [23].2

Results in favor of the Berry–Tabor conjecture are rare and can so far be only proved
for the pair correlation density3,

R2(s,N ) =
1
N

N∑
j,k=1

δ(s− λj + λk), (5)

which measures the spacings betweenall elements of the sequence and is therefore not
a probability distribution. In the case of a random sequence from a Poisson process,
R2(s,N ) converges to the limiting density4

R2 Poisson(s) = δ(s) + 1,

which is consequently the expectation for integrable systems. In other words,

lim
N→∞

∫ ∞

−∞
R2(s,N )h(s) ds = h(0) +

∫ ∞

−∞
h(s) ds, (6)

for a suitable class of test functionsh. This variant of the Berry–Tabor conjecture with
respect toR2(s) was verified by Sarnak [54] for the eigenvalues of the Laplacian on
almost every flat torus (almost every with respect to Lebesgue measure in the moduli
space of two-dimensional flat tori), but he simultaneously disproved the conjecture for
a set of second Baire category5. His result was recently extended to four-dimensional
tori by VanderKam [63, 64]. Similar studies in this direction are due to Rudnick and
Sarnak [52], whose results can be related to the eigenvalues of boxed oscillators, and
Zelditch [66], who considers the level spacings for quantum maps in genus zero. It
should be pointed out that, although the above results hold almost everywhere in the
corresponding parameter spaces, the Berry–Tabor conjecture could not be proved for a
specific example.6 For a more detailed up-to-date review on these topics see Sarnak’s
lectures [55, 56].

The Berry–Tabor conjecture can only be expected to hold forlocal statistics such
asP (s) orR2(s), i.e. statistics which only measure the independence of eigenvalues on

2 The local correlations of the eigenvalues ofeach individualcluster are studied by Uribe and Zelditch
[62].

3 Sinai [59] and Major [45] showed that the statistics of lattice points in certain generic strips follow Poisson
statistics inall moments. The boundary of these domains is not twice differentiable and looks like a trajectory
for Brownian motion. Spectra of integrable systems like integrable geodesic flows are, however, related via
EBK quantization to lattice points in domains with piecewisesmoothboundary [22].

4 The delta massδ(s) is a result of our definition which counts spacings between equal elements whose
spacing is trivially zero. The interesting part is the “1”.

5 Sets of second Baire category are all sets which are not of first Baire category, and the latter are sets,
which are countable unions of nowhere dense sets, so pretty sparse in the topological sense.

6 During the completion of this manuscript I have learned from A. Eskin that it is possible to prove relation
(6) for rectangle billiards with ratio of sidesα1/2 andα diophantine (e.g.α =

√
2), see [31]. This remarkable

result is consistent with Conjecture 1.2 (Sect. 1).
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the scale of the mean level spacing (which by virtue of (1) is unity and thus independent
of N ). Non-localstatistics like the number variance62(L) are well known to violate
the Poisson prediction due to non-universal long-range correlations, see Berry [6] and
Bleher and Lebowitz [16, 17]. A different type of non-local statistics is connected with
the fluctuations of the energy-level counting function (“the spectral staircase”) around
its mean value. It was shown that for certain integrable systems7 these fluctuations are
non-Gaussian, even though the local statistics follow in general the Poisson prediction.8

Fig. 1.A walk of N = 16 unit steps in the complex plane

In the present article, we shall study similarnon-localstatistical properties, which
are, however much closer linked to thelocal level spacing statistics. The central object of
our investigation will be thespectral form factorK2(τ,N ) (also calledpair correlation
form factor), which is defined as the Fourier transform of the pair correlation density,

K2(τ,N ) =
∫ ∞

−∞
R2(s,N ) e(τ s) ds,

R2(s,N ) =
∫ ∞

−∞
K2(τ,N ) e(−s τ ) dτ

with e(z) ≡ e2πi z, hence,

K2(τ,N ) = |N−1/2
N∑
j=1

e(λj τ )|2. (7)

The sum

N∑
j=1

e(λj τ ) (8)

may be viewed as a walk in the complex plane (Fig. 1), consisting ofN steps of unit
length, whose direction is determined by the phasesξj = 2πλjτ . In the case when the
λj come from a Poisson process, the probability of finding the end point afterN steps
outside a disk of radius

√
NR (R is a fixed constant) has – by virtue of the classical

7 E.g. billiards in a rectangle and tori [34, 9, 10, 14, 13], Liouville surfaces [41, 15], other surfaces of
revolution [11], and Zoll surfaces [57]. For a survey see [12].

8 In contrast, for chaotic systems the fluctuations of the spectral staircase are conjectured to be Gaussian
[4, 3], based mainly on numerical evidence.
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central limit theorem – in the limitN → ∞ a Gaussian limit distribution in the complex
plane. This means in particular that

lim
N→∞

ProbPoisson{K2(τ,N ) > R} =
∫ ∞

R

e−r dr = e−R . (9)

If, however, theλj are given by a deterministic sequence, we can test the “independence”
of theλj by considering the distribution of the sum (8), i.e. the distribution of endpoints
of the corresponding walk, for different values ofτ . That is, we throwτ at random with
probability densityρ, and ask if, as above,

lim
N→∞

Probρ{K2( · , N ) > R} = e−R . (10)

Clearly, the answer to this question may now also depend on correlations between the
λj , which do not only appear on the scale of the mean level spacing but as well on
scales in units ofNγ , for some power 0≤ γ ≤ 1, say. That is the reason why we have
classified this statistic asnon-local.

For τ random as above, relation (6) can be reformulated as

lim
N→∞

EρK2( · , N ) = 1 +ρ(0), (11)

whereEρ denotes the expectation, andh = ρ̂ andρ are related by Fourier transformation,

ρ̂(s) =
∫ ∞

−∞
ρ(τ ) e(s τ ) ds.

The statistical properties of the form factorK2(τ,N ) have received great attention
in the quantum chaos literature, see e.g. [43, 2, 44, 27, 50, 1] and references therein. It is
generally believed that the normalized fluctuations of the form factor for a chaotic system
are of Gaussian nature [50, 42], cf. also footnote 28 in [2]. The situation for integrable
systems seems to be more subtle. We shall see that, even though a generic rectangle
billiard is likely to follow Poisson statistics locally [5, 21, 17], the fluctuations of the
form factor are not Gaussian but have a limit distribution with algebraic-logarithmic tail.9

On the other hand, numerical studies of the circle billiard exhibit Gaussian fluctuations of
the form factor [61]. If these are truly Gaussian for the circle or other generic integrable
cases (e.g. Liouville surfaces), remains an interesting open problem.

1.1. Billiards in a rectangle.The quantum energies of a rectangle billiard are given by
the eigenvalues of the negative Laplacian

−1 = − ∂2

∂q2
1

− ∂2

∂q2
2

with Dirichlet conditions on the boundary of the rectangle. The eigenvalues scale trivially
with the area of the rectangle, so the only parameter which will enter the theory is the
side ratioα1/2, 0< α ≤ 1. (The reason why we work withα rather than the side ratio
itself will become apparent later.)

9 Similar deviations from a Gaussian distribution have been observed by Casati et al. [21], who calculated
(numerically) the fluctuations of the differenceP (s, N ) − PPoisson(s). Other non-local statistics for rectangle
billiards , such as the number variance and the fluctuations of the spectral staircase have been considered
e.g. by Casati et al. [20, 21], Berry [6], Bleher et al. [10, 14, 13, 16, 17].
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Taking the area to be 4π we have eigenvalues

E(α)
m,n =

π

4
(α1/2m2 + α−1/2n2), m, n ∈ N,

which we label in increasing order and with multiplicity by 0< λ(α)
1 < λ(α)

2 ≤ λ(α)
3 ≤

. . . . This sequence clearly satisfies (1), since the number of lattice points in an ellipse
of areaλ is asymptoticallyλ. More precisely, we have

#{j : λ(α)
j ≤ λ} = λ− π−1/2(α1/4 + α−1/4) λ1/2 +Oγ(λγ), (12)

where the relation is conjectured to hold for anyγ > 1
4; the best bound so far,γ > 23

73,
is due to Huxley [36].

1.2. The main results.Let us viewτ as a random variable, which is distributed on
the compact intervalI ⊂ R with a piecewise continuous probability densityρ, andα
as a random variable with piecewise continuous probability densityσ on the compact
intervalA ⊂ R+ − {0}. The expectationEρ,σ for the random variablef (τ, α) is then
defined as

Eρ,σf =
∫
I

∫
A

f (τ, α) ρ(τ ) σ(α) dτ dα,

and its probability to be greater thanR by

Probρ,σ{f > R} =
∫
I

∫
A

DR(τ, α) ρ(τ ) σ(α) dτ dα,

with the distribution function

DR(τ, α) =

{
1 if f (τ, α) > R

0 otherwise.

Theorem 1.1. There exists a decreasing function9 : R+ → R+ with

9(0) = 1,
∫ ∞

0
9(R) dR = 1,

9(R) ∼ cR−2 logR (for R → ∞),

discontinuous only for at most countably manyR, such that,

lim
N→∞

Probρ,σ{K2( · , N ) > R} = 9(R),

except possibly at the discontinuities of9(R).

The constantc is given by the expression

c =
2
π6

∫
R2

|
∫
t21+t22≤1

e(t21u1 + t22u2) d2t|4d2u. (13)
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Remarks. (A)The condition
∫∞

0 9(R) dR = 1 is consistent with a Gaussian limit
distribution and thus consistent with the fact that the pair correlation function is the one
for Poisson random numbers.

(B) The condition9(R) ∼ cR−2 logR implies that the limit distribution is non-
Gaussian. In particular, the higher moments

∫∞
0 Rkd9(R) (k > 2) diverge. This di-

vergence has the following origin. Just as the momentk = 1 is related to the pair
correlation functionR2(s,N ) (i.e. counting spacings), the momentk = 2 is related to
the density

1
N2

N∑
j1,j2,k1,k2=1

δ(s− λj1 − λj2 + λk1 + λk2), (14)

and thus to (with the above test functionh)

1
N2

N∑
j1,j2,k1,k2=1

h(λj1 + λj2 − λk1 − λk2), (15)

which amounts to counting the number of quadruples of eigenvalues such that

λj1 + λj2 − λk1 − λk2

is in the interval [−a, a], say. In the case of a rectangle billiard, this number grows like
� (N logN )2, due to number-theoretic degeneracies: recall that in this case we count
essentially the integersm1, . . . ,m4, n1, . . . , n4 ≤ √

N with

(m2
1 + αn2

1) + (m2
2 + αn2

2) − (m2
3 + αn2

3) − (m2
4 + αn2

4) (16)

in some interval. The number of solutions of

m2
1 +m2

2 = m2
3 +m2

4, n2
1 + n2

2 = n2
3 + n2

4

with m1, . . . ,m4, n1, . . . , n4 ≤ √
N grows like� (N logN )2, due to Landau’s clas-

sical result on the number of ways of writing an integer as a sum of two squares.
Hence the number of solutions of (16) in any arbitrarily small interval [−ε, ε] grows like
� (N logN )2, hence the divergence of the second moment, at least for test functions
h with h(0) 6= 0. But sinceh is the Fourier transform of a probability density, we in
fact haveh(0) = 1. This explains the divergence of the momentsk = 2 and higher.
Consequently, we cannot employ the method of moments to prove the above theorem.
We shall instead use another approach based on the transformation formulas of theta
functions, relating the existence of the limit distribution to the mixing property of certain
flows, see Sect. 5 for details. This is essentially the same idea as in the proofs of the
limit theorems of theta sums

N∑
n=1

e(n2x)

in [46, 47, 48], which is now generalized to theta sums with more variables. The methods
presented here could be further generalized to Siegel theta sums of arbitrary quadratic
formsQ(ξ) of d variables, ∑

ξ∈Zd∩3N

e(Q(ξ) τ ).
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Here,3N denotes some suitable domain3 ⊂ Rd, which is magnified by a factor ofN .
It would be interesting to see, in which cases the values of the above theta sums have a
limit distribution forτ random. The expectation value of this limit distribution is related
to the quantitative version of the Oppenheim conjecture forQ(ξ), cf. Eskin et al. [29, 30]
and Borel’s survey [19].

(C) Theorem 1.1 implies that there cannot be a set ofα of non-zero Lebesgue measure,
for which (for fixedα and randomτ ) Probρ{K2( · , N ) > R} converges to e−R. We
instead have good reasons to believe the following to be true for thoseα, which are
diophantine, i.e., badly approximable by rationals.10

Conjecture 1.2. Theorem 1.1 even holds whenα is not random but fixed, as long asα
is diophantine. That means in particular

lim
N→∞

Probρ{K (α)
2 ( · , N ) > R} = 9(R),

with the same function9(R) as before.

The truth of this conjecture is related to the equidistribution of horocycles in the prod-
uct space0\ PSL(2,R) × 0\ PSL(2,R) (for details see Sect. 5, in particular Conjecture
5.6, and Sect. 6).

The conjecture is obviously false for rationalα = p
q . The following theorem follows

from the results in [39, 46], see Sect. 7 for details.

Theorem 1.3. Letψ be piecewise continuous and of compact support. Then there exists
a decreasing function9( p

q ) : R+ → R+ with

9( p
q )(0) = 1, 9( p

q )(R) ∼ c( p
q ) R−1 (for R → ∞),

discontinuous for at most countably manyR, such that,

lim
λ→∞

Probρ{K ( p
q )

2 ( · , λ) > R} = 9( p
q )(R),

except possibly at the discontinuities of9( p
q )(R).

In the special caseα = p
q = 1 the constantc( p

q ) readsc(1) = 1/π.

Remark.The fact that now
∫∞

0 9(R) dR = ∞ diverges is due to the well known de-
generacy of values of rational quadratic forms at integers (cf. previous remark B). In
particular, one has for the pair correlation function (Proposition 7.1)

EρK
( p

q )
2 ( · , N ) ∼ b( p

q ) logN (N → ∞). (17)

Forα = p
q = 1 we haveb(1) = 1/π. The logarithmic divergence resembles the average

number of ways to write an integer as a sum of two squares, which is a classical result by
Landau, cf. the previous Remark (B). As a consequence, the consecutive level spacing
distribution isP (s) = δ(s) for all rationalα. For more information on two-level statistics
for the square billiard, cf. also Connors and Keating [24].

10 The precise definition of a diophantine number will be given later (Sect. 5). The set of diophantine
numbers is of full Lebesgue measure inR.
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1.3. Basic definitions and notations.The expressionsx �a y andx = Oa(y) both mean
there exists a constantCa (which may depend on some additional parametera) such
that |x| ≤ Ca|y|. The notationx = O(y−∞) is an abbreviation forx = OM (y−M ) for
everyM ≥ M0, for some suitably large constantM0. A piecewise continuousfunction is
discontinuous only on a set of measure zero, and bounded on all compact sets. We denote
by S(Rn) the Schwartz class onRn, i.e. the space of smooth functionsf (t1, . . . , tn)
which decrease rapidly whent21 + . . . + t2n → ∞. The same must hold for all derivatives
of f .

2. Invariance Properties of the Form Factor

The pair correlation densityR2(s, λ) and the form factorK2(τ, λ) measure the statistics
of levels in an energy window [0, λ]. For technical reasons it is convenient to smooth this
window, i.e., choose a smooth cut-off functionψ ∈ C∞(R+), which is rapidly decreasing
at∞ and consider the smoothed (inλ) pair correlation density

R2,ψ(s, λ) =
1
λ

∑
λj ,λk

ψ(
λj
λ

) ψ(
λk
λ

) δ(s− λj + λk), (18)

and the smoothed form factor

K2,ψ(τ, λ) = |λ−1/2
∑
λj

ψ(
λj
λ

) e(λj τ )|2. (19)

In the case of the rectangle billiard the form factor has the explicit expression

K (α)
2,ψ(τ, λ) = |λ−1/2

∑
m,n∈N

ψ(
π
4 (α1/2m2 + α−1/2n2)

λ
) ×

× e(
π

4
(α1/2m2 + α−1/2n2) τ )|2. (20)

For symmetry reasons, we can write the sum as

4
∑
m,n∈N

=
∑
m,n∈Z

−
∑

m=0,n∈Z
−

∑
m∈Z,n=0

+
∑

m=0,n=0

.

The form factor can now be expressed in terms of the theta functions

2f (z) = y1/4
∑
n∈Z

f (n y1/2) e(n2x), (21)

and

2f (z1; z2) = y1/4
1 y

1/4
2

∑
m,n∈Z

f (my
1/2
1 , n y

1/2
2 ) e(m2x1 + n2x2), (22)

wherezj = xj + i yj is a complex variable. Setting

f (t) = ψ(t2), f (t1, t2) = ψ(t21 + t22),

and
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z1 =
π

4
α1/2(τ + i λ−1), z2 =

π

4
α−1/2(τ + i λ−1),

we have

K (α)
2,ψ(τ, λ) =

1
16

|(π
4

)−1/2 2f (z1, z2)

− λ−1/4
[
(
π

4
α1/2)−1/4 2f (z1) + (

π

4
α−1/2)−1/4 2f (z2)

]
+ λ−1/2ψ(0)|2. (23)

It is intuitively clear that in the limitλ → ∞ the most important contributions should
come from the two-variable theta sum. However, for special values ofα andτ this need
not be the case, but the set of exceptions is fortunately of measure zero. The following
lemma follows from standard estimates on theta sums [33].

Lemma 2.1. For almost allα andτ (with respect to Lebesgue measure) and anyε > 0
we have

K (α)
2,ψ(τ, λ) = K̂ (α)

2,ψ(τ, λ) +Oα,τ,ε(λ
−1/4+ε),

with

K̂ (α)
2,ψ(τ, λ) =

1
4π

|2f (z1, z2)|2.

The transformation formulas of theta functions (21) in one complex variable were
the starting point of the studies in [46, 47, 48], and can be readily generalized to the
two-variable sum2f (z1; z2), by considering each variable separately.

Before stating the transformation formulas, we have to introduce some geometry.
Every elementg in the Lie group PSL(2,R) = SL(2,R)/{±1} has a unique Iwasawa
decomposition

g =

(
1 x
0 1

)(
y1/2 0

0 y−1/2

)(
cosφ − sinφ
sinφ cosφ

)
,

wherez = x + i y is a point in the upper half plane

H = {z = x + i y : x, y ∈ R, y > 0},
andφ ∈ [0, π) parametrizes the circle S1, so the underlying manifold of PSL(2,R) may
be identified with the manifoldH × S1. The invariant volume element (Haar measure)
reads in this choice of coordinates

dµ(g) =
dx dy dφ

y2
.

By virtue of the relation(
a b
c d

)(
1 x
0 1

)(
y1/2 0

0 y−1/2

)(
cosφ − sinφ
sinφ cosφ

)
=

(
1 x′
0 1

)(
y′1/2 0

0 y′−1/2

)(
cosφ′ − sinφ′
sinφ′ cosφ′

)
, (24)

where

x′ + i y′ =
a(x + i y) + b
c(x + i y) + d

, φ′ = φ + arg[c(x + i y) + d],
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the action of PSL(2,R) onH × S1 is canonically given by

g (z, φ) =
(
gz, φ + arg(cz + d)

)
, g =

(
a b
c d

)
, (25)

whereg acts onz ∈ H by fractional linear transformations, i.e.,

g z =
az + b
cz + d

.

Thetheta group0θ, which is generated by the elements(
1 1
0 1

)
and

(
0 −1/2
2 0

)
,

corresponding to the transformations(
1 1
0 1

)
(z, φ) =

(
z + 1, φ),

(
0 −1/2
2 0

)
(z, φ) =

(− 1
4z
, φ + argz),

is an example of a discrete subgroup of PSL(2,R), such that the quotient manifold

Mθ = 0θ\ PSL(2,R) = {0θh : h ∈ PSL(2,R)}
has finite volumeµ(Mθ) = π2, but is not compact (with respect to the measure introduced
above). A fundamental region of0θ in H is (Fig. 2)

Fθ = {z ∈ H : |x| < 1/2, |z| > 1/2}. (26)

There are two cusps which are represented by the points at∞ and 1
2 (− 1

2 is equivalent
to 1

2). It is well known that every rational point on the boundary Imz = 0 of H is
0θ-equivalent to one of the cusp points, i.e. there is always an element(

a b
c d

)
∈ 0θ

y

-1/2 0 1/2
x

Fig. 2. The fundamental regionFθ = {z ∈ H : |x| < 1/2, |z| > 1/2} in H for the theta group0θ . The
cusps are represented by the points at∞ and 1

2 . The thin lines indicate the symmetries of the surface
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such that

apq + b

cpq + d
= ∞ or

1
2
. (27)

We first review some properties of one-variable theta sums, cf. [46, 47, 48]. For
f ∈ S(R), define the theta function2f as a function onH × [0, 4π) by

2f (z, φ) = y1/4
∑
n∈Z

fφ(n y1/2) e(n2x), (28)

where

fφ(t) =
∫

R
Gφ(t, t′) f (t′) dt′, (29)

with the harmonic oscillator Green function

Gφ(t, t′) = 21/2e(−σφ/8)| sinφ|−1/2e

[
(t2 + t′2) cosφ− 2t t′

sinφ

]
,

whereσφ = 2k + 1 whenkπ < φ < (k + 1)π with k ∈ Z.

Proposition 2.2. Let f ∈ S(R). Then2f (z, φ) is infinitely differentiable and satisfies
the following functional relations:

2f (z + 1, φ) = 2f (z, φ),

2f (− 1
4z
, φ + argz) = e− iπ/4 2f (z, φ).

The function|2f |2 may thus be viewed as an infinitely differentiable function on the
manifold

Mθ = 0θ\ PSL(2,R).

The second relation implies2f (z, φ + π) = − i 2f (z, φ).
Since our theta function is smooth, it is bounded except in the cusps. In order to

state the asymptotic behaviour of the function in the cusp at1
2, we introduce a set of new

coordinates,

(w, θ) = (−(4z − 2)−1, φ + arg(z − 1/2)),

in which the cusp at12 is represented as a cusp at infinity. That is,v = Imw is the
coordinate pointing into the cusp, andu = Rew the one orthogonal to it.

Proposition 2.3. Letf ∈ S(R). Then

2f (z, φ) =

{
y1/4fφ(0) +O(y−∞) (y > 1

100)
O(v−∞) (v > 1

100).
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The ranges for which the above relations hold, cover the entire fundamental region
{z ∈ H : 0 < x < 1, |z| > 1/2, |z − 1| > 1/2}. (This new region is obtained from
the old oneFθ by shifting the left half byx 7→ x+ 1.) Within these ranges, the relations
are uniform in (z, φ) (1st rel.), (w, θ) (2d rel.).

Forf ∈ S(R2), define the theta function2f as a function onH×[0, 4π)×H×[0, 4π)
by

2f (z1, φ1; z2, φ2) = y1/4
1 y

1/4
2

∑
m,n∈Z

fφ1,φ2(my
1/2
1 , n y

1/2
2 ) e(m2x1 + n2x2), (30)

where

fφ1,φ2(t1, t2) =
∫∫

R2

Gφ1(t1, t1
′) Gφ2(t2, t2

′) f (t1
′, t2′) dt1′dt2′, (31)

with the same harmonic oscillator Green functionGφ(t, t′) as before. It can be readily
verified thatfφ1,φ2(t1, t2) is again∈ S(R2) (use partial integration int1 andt2), so the
sum defining2f is rapidly convergent for every (φ1, φ2).

Proposition 2.4. Letf ∈ S(R2). Then2f (z1, φ1; z2, φ2) is infinitely differentiable and
satisfies the following functional relations:

2f (z1 + 1, φ1; z2, φ2) = 2f (z1, φ1; z2, φ2),

2f (− 1
4z1

, φ1 + argz1; z2, φ2) = e− iπ/4 2f (z1, φ1; z2, φ2),

2f (z2, φ2; z1, φ1) = 2f (z1, φ1; z2, φ2).

The function|2f |2 may thus be viewed as an infinitely differentiable function on the
manifold

M2
θ = 0θ\ PSL(2,R) × 0θ\ PSL(2,R).

The second relation implies2f (z1, φ1 + π; z2, φ2) = − i 2f (z1, φ1; z2, φ2).
As mentioned above, the proof of the proposition follows exactly the lines of the

analogous proposition for one-variable theta functions, compare e.g. [47].
As a fundamental region of0θ × 0θ we choose the set

F = Fθ × [0, π) × Fθ × [0, π). (32)

The four cusps of codimension two are represented by

(∞, φ1; z2, φ2), (
1
2
, φ1; z2, φ2), (z1, φ1; ∞, φ2), (z1, φ1;

1
2
, φ2);

every point of the form

(
p

q
, φ1; z2, φ2), (z1, φ1;

p

q
, φ2),

p

q
∈ Q

is equivalent to one of those four, compare (27).
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Proposition 2.5. Letf ∈ S(R2). Then

2f (z1, φ1; z2, φ2) =

=


(y1 y2)1/4fφ1,φ2(0, 0) +O((y1 y2)−∞) (y1 >

1
100, y2 >

1
100)

O((v1 v2)−∞) (v1 >
1

100, v2 >
1

100)

O(y1/4
1 v−∞

2 ) (y1 >
1

100, v2 >
1

100)

O(v−∞
1 y

1/4
2 ) (v1 >

1
100, y2 >

1
100).

These relations are uniform in (z1, φ1; z2, φ2) (1st rel.), (w1, θ1;w2, θ2) (2d rel.),
(z1, φ1;w2, θ2) (3d rel.), (w1, θ1; z2, φ2) (4th rel.). The proof follows directly from Propo-
sition 2 in [46].

The inner products and norms of the L2 spaces in question are defined as usual by

(f, g)L2(R2) =
∫∫

R2

f g d2x, ‖f‖L2(R2) =
√

(f, f )L2(R2) (33)

and

(F,G)L2(M2
θ

) =
∫∫

M2
θ

F G d2µ, ‖F‖L2(M2
θ

) =
√

(F, F )L2(M2
θ

). (34)

By virtue of the last proposition, it is clear that|2f | is in L2(M2
θ). If f is even,

i.e.f (t1, t2) = f (−t1, t2) = f (t1,−t2), we have the relation

1
2π2

‖2f‖L2(M2
θ

) = ‖f‖L2(R2), (35)

compare [46], Proposition 4.

3. Regime I: |τ | � λ−1/2−ε

We begin with the regime where|τ | ≤ CIλ
−γ with γ > 1

2, andCI an arbitrary constant.
The behaviour of the form factor is entirely determined by the values of the theta function
in the cusp at∞, since

K̂ (α)
2,ψ(τ, λ) =

1
4π

|2f (z1, 0;z2, 0)|2 =
1

4π
|2f (− 1

4z1
, argz1; − 1

4z2
, argz2)|2

with

− 1
4z1

=
1

πα1/2

−τ + i λ−1

τ2 + λ−2
, argz1 = arg(τ + i λ−1),

− 1
4z2

=
1

πα−1/2

−τ + i λ−1

τ2 + λ−2
, argz2 = arg(τ + i λ−1).

Forλ → ∞, the imaginary part of−1/4zj becomes infinitely large, so Proposition 2.5
is applicable, yielding

K̂ (α)
2,ψ(τ, λ) =

1
4π2

|farg(τ+i λ−1),arg(τ+i λ−1)(0, 0)|2 λ−1

τ2 + λ−2
+O(λ−∞) (36)

which holds uniformly for|τ | ≤ CIλ
−γ . It is easy to see that
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|farg(τ+i λ−1),arg(τ+i λ−1)(0, 0)|2

= 4λ2(τ2 + λ−2) |
∫∫

e[(t21 + t22)τλ] f (t1, t2) dt1dt2|2

= 4λ2(τ2 + λ−2) |π
∫ ∞

0
e(rτλ)ψ(r) dr|2. (37)

Therefore

K̂ (α)
2,ψ(τ, λ) = |

∫ ∞

0
e(rτλ)ψ(r) dr|2 λ +O(λ−∞) (38)

for λ → ∞ uniformly in |τ | ≤ CIλ
−γ . In this regime, the form factor looks therefore

asymptotically as a delta mass at zero: upon applying a test functionρ we have∫ CIλ
−γ

−CIλ−γ

ρ(τ )K̂ (α)
2,ψ(τ, λ) dτ ∼

∫ CIλ
1−γ

−CIλ1−γ

ρ(τ/λ)|
∫ ∞

0
e(rτ )ψ(r) dr|2dτ,

and withρ(τ/λ) ∼ ρ(0) for τ ∈ [−CIλ1−γ , CIλ1−γ ] the above reduces to

∼ ρ(0)
∫ ∞

−∞
|
∫ ∞

0
e(rτ )ψ(r) dr|2dτ = ρ(0)

∫ ∞

0
ψ(r)2dr

by Parseval’s equality. In summary,∫ CIλ
−γ

−CIλ−γ

ρ(τ )K (α)
2,ψ(τ, λ) dτ ∼

∫ CIλ
−γ

−CIλ−γ

ρ(τ )K̂ (α)
2,ψ(τ, λ) dτ

∼ ρ(0)
∫ ∞

0
ψ(r)2dr. (39)

Regime I is usually referred to as thesaturation regime, since the number variance62(L)
saturates in this regime, in contrast to the prediction for a Poisson process [6, 16].

4. Regime II: λ−1/2−ε � |τ | � λ−1/2+ε

Regime II is defined as the region whereCIλ−1/2−ε ≤ |τ | ≤ CIIλ
−1/2+ε, withCI and

CII arbitrary positive constants. From the discussion of Regime I it is clear that the form
factor in Regime II can at most grow like

K2,ψ(τ, λ) = Oε(λ
2ε), (40)

which is obtained from (38) forτ = λ−1/2−ε. The otherτ -values in Regime II are
bounded farther away from the cusp, so that the above indeed gives an upper bound.
The most interesting part of Regime II is whenCIλ−1/2 ≤ |τ | ≤ CIIλ

−1/2. Let us put
ω = τλ1/2. Then we have for largeλ,

− 1
4zj

=
1

πα±1/2

−ωλ−1/2 + i λ−1

ω2λ−1 + λ−2
∼ 1
πα±1/2

(−ω−1λ1/2 + i ω−2)

and
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argzj = arg(ωλ−1/2 + i λ−1) → 0+.

Since the series defining2f (z1, φ1; z2, φ2) converges uniformly fory1 andy2 in com-
pacta, we finally obtain

K (α)
2,ψ(τ, λ) ∼ K̂ (α)

2,ψ(τ, λ) ∼ K̂
(1/α)
2,ψ (− 4

π2

λ1/2

ω
,

4
π2

1
ω2

) (λ → ∞) (41)

uniformly for |ω| = |τ |λ1/2 ∈ [CI , CII ].
Before turning to Regime III (τ ∼ const.), where we shall study the fluctuations of the

form factor around its mean, we will have to prove some facts about the equidistribution
of certain sets inM2

θ.

5. Ergodicity, Mixing and Equidistribution

In this section we discuss some ergodic properties of the geodesic flow on hyperbolic
surfaces of finite area, whose unit tangent bundle is represented by the quotientM =
0\ PSL(2,R), where0 is a discrete subgroup, such as the theta group0θ. The surface
should only have a finite number of cusps (≥ 0), and we assume that, if there is at least
one cusp, the half-plane coordinates are chosen in such a way that one of the cusps
appears as the standard cusp of unit width at∞.

Consider the following three flows onM = 0\ PSL(2,R), defined by right transla-
tion,

g 7→ g8t, 8t =

(
et/2 0
0 e−t/2

)
, (42)

and

g 7→ g9t
±, 9t

+ =

(
1 t
0 1

)
, 9t

− =

(
1 0
t 1

)
. (43)

These flows actually represent the geodesic and the (positive and negative) horocy-
cle flow on the unit tangent bundle of the surface0\H, which can be identified with
0\ PSL(2,R) (the angleφ is in fact− 1

2 times the orientation angle of the tangent vector).
These flows are well known to be ergodic and mixing [25]. The mixing property can be
stated as follows.

Proposition 5.1. LetF,G ∈ L2(M). Then

lim
t→±∞

∫
M
F (g)G(g8t) dµ(g) =

1
µ(M)

∫
M
F dµ

∫
M
G dµ.

The mixing property has an interesting consequence for the asymptotic distribution
of long arcs of horocycles, which is stated in the following corollary. In fact, the in-
vestigation of measures concentrated along unstable fibers (which in our case are the
horocycles) is a central issue in the theory of dynamical systems. Our proof will follow
an idea of Eskin and McMullen [28], Theorem 7.1.; for related methods, cf. Kleinbock
and Margulis [40], Sect. 2.2.1. and references therein.
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Corollary 5.2. LetF be bounded and piecewise continuous onM, andh be piecewise
continuous and of compact support onR. Then, for anyg0 ∈ M,

lim
t→−∞

∫
R
h(u)F (g09

u
+8t) du =

1
µ(M)

∫
M
F dµ

∫
R
h du.

Proof. Every elementg =
(
a b
c d

) ∈ SL(2,R) with d 6= 0 can be written as a product

g = ±9u
+8a9b

−. (44)

Let F be continuous on PSL(2,R), left-invariant under0 and compactly supported
when viewed as a function onM = 0\ PSL(2,R). Let furthermoreH be the function
on PSL(2,R) defined for some fixedε > 0 by

H(g) =

{
h(u) 1

εχ(aε )χ(b) for g = 9u
+8a9b

−
0 for g =

(
a b
c 0

)
,

whereχ is the characteristic function of the interval [− 1
2 ,

1
2]. Consider the integral∫

PSL(2,R)
H(g)F (g0g8

t) dµ(g) =
∫

PSL(2,R)
H(9u

+8a9b
−)F (g09

u
+8a9b

−8t) dµ.
(45)

The bi-invariant Haar measure in these coordinates is given by

dµ = e−a da db du. (46)

Step A.Now using the relation9b
−8t = 8t9b et

− the integral transforms to∫
PSL(2,R)

H(9u
+8a9b

−)F (g09
u
+8a+t9b et

− ) dµ. (47)

The distance (with respect to the invariant metric on PSL(2,R)) between the points
g09

u
+8a+t9b et

− andg09
u
+8a+t is b et, hence

F (g09
u
+8a+t9b et

− ) = F (g09
u
+8a+t) +O(b et), (48)

where the implied constant does not depend onu,a, b or t, forF is uniformly continuous.
For−t large we thus have∫

PSL(2,R)
H(9u

+8a9b
−)F (g09

u
+8a+t9b et

− ) dµ

=
∫

R2

h(u)
1
ε
χ(
a

ε
)F (g09

u
+8a+t) e−a da du +O(et). (49)

Step B.We can rewrite (45) as∫
PSL(2,R)

H(g−1
0 g)F (g8t) dµ(g) =

∫
M

(∑
γ∈0

H(g−1
0 γg)

)
F (g8t) dµ(g) (50)
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sinceF anddµ are0-left-invariant. The latter, by the mixing property, has the limit
(notice that the functionG(g) =

∑
γ∈0H(g−1

0 γg) is 0-left-invariant)

1
µ(M)

∫
M
F dµ

∫
M

∑
γ∈0

H(g−1
0 γg) dµ(g)

=
1

µ(M)

∫
M
F dµ

∫
PSL(2,R)

H dµ

=
1

µ(M)

∫
M
F dµ

∫
R2

h(u)
1
ε
χ(
a

ε
) e−a da du. (51)

Step C.Combining Steps A and B we conclude that

lim
t→−∞

∫
R2

h(u)χ(a)F (g09
u
+8εa+t) e−εa da du

=
1

µ(M)

∫
M
F dµ

∫
R2

h(u)χ(a) e−εa da du. (52)

By the uniform continuity ofF , given anyδ > 0, we find anε > 0 such that∫
R2

h(u)χ(a)F (g09
u
+8εa+t) e−εa da du− δ

<

∫
R2

h(u)χ(a)F (g09
u
+8t) da du

<

∫
R2

h(u)χ(a)F (g09
u
+8εa+t) e−εa da du + δ. (53)

Since the limitst → −∞ on the left and right hand side exist for every fixedε, and
differ by 2δ, which can be made arbitrarily small, the limit

lim
t→−∞

∫
R
h(u)F (g09

u
+8t) du =

1
µ(M)

∫
M
F dµ

∫
R
h(u) du (54)

must exist as well. In order to relax the condition of compact support forF notice that the
assertion trivially holds forF ≡ const. One can then again use the inclusion principle
to relax both the compact support hypothesis and the continuity hypothesis.�

Remarks. (A)It is crucial that the limit ist → −∞. The limit t → +∞ diverges, since
in this case the support of the measure converges towards a single limit point on the
boundary ofH.

(B) Forg0 = 1 the assertion of the corollary can be stated in the (z, φ)-coordinates as

lim
y→0

∫
R
h(x)F (z, 0)dx =

1
µ(M)

∫
M
F dµ

∫
R
h dx. (55)

In the case when the average is taken over aclosedhorocycle andh ≡ 1, this was
proved by Sarnak [53]. Hejhal [35] extended the result toh of the above class, but still
for closed horocycles and forF which are independent ofφ, i.e. functions on0\H. His
proof involves estimates on Poincaré series of weight zero.
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The observation of the previous corollary shall now be extended from averages over
translates of horocycles to averages over translates of more general curves, which are
given by the equation (in suitable coordinates)y = ef (x), wheref is a bounded real
function. The casef ≡ const corresponds to horocycles.

Corollary 5.3. LetF , h be as before, and letf : R → R be continuous on the support
of h. Then, for anyg0 ∈ M,

lim
t→−∞

∫
R
h(u)F (g09

u
+8t+f (u)) du =

1
µ(M)

∫
M
F dµ

∫
R
h du.

That is, forg0 = 1,

lim
y→0

∫
R
h(x)F (x + i y ef (x), 0)dx =

1
µ(M)

∫
M
F dµ

∫
R
h dx.

Proof. Repeat the proof of the previous corollary with

H(g) =

{
h(u) 1

εχ(a−f (u)
ε )χ(b) for g = 9u

+8a9b
−

0 for g =
(
a b
c 0

)
,

which still has compact support, sincef is bounded on the support ofh. The only main
difference to the previous proof is in Step C where we have instead

1
ε

∫
R2

h(u)χ(
a− f (u)

ε
)F (g09

u
+8a+t) da du

=
∫

R2

h(u)χ(a)F (g09
u
+8εa+t+f (u)) da du, (56)

and the conclusion is the same as before, forf is bounded on the domain of integration.
�

The next step is to define flows on the product space

M2 = 0\ PSL(2,R) × 0\ PSL(2,R)

by the diagonal action

0\ PSL(2,R) × 0\ PSL(2,R) → 0\ PSL(2,R) × 0\ PSL(2,R), (57)

(g1, g2) 7→ (g1, g2)8t := (g18
t, g28

t)

and
(g1, g2) 7→ (g1, g2)9t

± := (g19
t
±, g29

t
±).

We shall still call these flowsgeodesicor horocyclic, respectively. Each one is the direct
product of two mixing dynamical systems, and thus mixing itself [25]:

Proposition 5.4. LetF,G ∈ L2(M2). Then

lim
t→±∞

∫
M2

F (g1, g2)G((g1, g2)8t) d2µ(g1, g2) =
1

µ(M2)

∫
M2

F d2µ

∫
M2

G d2µ.
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The analogue of Corollaries 5.2 and 5.5 is the following:

Corollary 5.5. Let F be bounded and piecewise continuous onM2, h be piecewise
continuous and of compact support onR2, andf = (f1, f2) : R2 → R2 continuous on
the support ofh. Then, for any(g1, g2) ∈ M2,

lim
t→−∞

∫
R2

h(u1, u2)F (g19
u1
+ 8t+f1(u1,u2), g29

u2
+ 8t+f2(u1,u2)) d2u

=
1

µ(M2)

∫
M2

F d2µ

∫
R2

h d2u.

The proof of Corollary 5.2 obviously generalizes to this case. For (g1, g2) = 1 we
have

lim
y→0

∫
R2

h(x1, x2)F (x1 + i y ef1(x1,x2), 0;x2 + i y ef2(x1,x2), 0)d2x

=
1

µ(M2)

∫
M2

F d2µ

∫
R2

h d2x. (58)

There are reasons to believe that the above equidistribution results do not only hold
for two-dimensional averages over (x1, x2), but even for averages over one-dimensional
lines given byx2 = ηx1. In the case when the lattice group0 is a congruence subgroup
of PSL(2,R) (such as the theta group0θ), it has to be assumed, however, thatη is badly
approximable by rationals, i.e. ∣∣∣∣η − p

q

∣∣∣∣ ≥ C

qκ

for all rationals pq and someκ ≥ 2. Numbersη satisfying this condition are called
diophantine. The reason for the necessity of this condition will become clearer in Sect. 7.

Conjecture 5.6. SupposeM = 0\ PSL(2,R) with 0 a congruence subgroup of
PSL(2,R). LetF be bounded and piecewise continuous onM2, h be piecewise contin-
uous and of compact support onR. If η is diophantine, we have for ally1, y2 > 0,

lim
y→0

∫
R
h(x)F (x + i y1y, 0;ηx + i y2y, 0)dx =

1
µ(M2)

∫
M2

F d2µ

∫
R
h dx.

The above observations on the equidistribution of certain sets will now be applied to
understand the value distribution of the form factor in the most subtle Regime III, where
the order of magnitude ofτ is independent ofλ.

6. Regime III: τ ∼ const

6.1. The expectation value.The following proposition is the analogue of Sarnak’s
Proposition 2.1(A) on the weak convergence of the pair correlation function in the case
of a two-dimensional family of tori [54]. Here, the weak convergence is with respect to
our one-dimensional family of rectangles, parametrized byα. (Recall the definition of
ρ andσ in Sect. 1.2.)
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Proposition 6.1. Letψ be piecewise continuous and of compact support. Assume fur-
thermoreρ is continuous at0. Then

lim
λ→∞

Eρ,σK2,ψ( · , λ) =
(
1 +ρ(0)

) ∫ ∞

0
ψ(r)2dr.

Proof. We have to estimate the integral∫∫
|λ−1/2

∑
m,n∈N

ψ(
π
4 (α1/2m2 + α−1/2n2)

λ
) ×

× e(
π

4
(α1/2m2 + α−1/2n2) τ )|2ρ(τ ) σ(α) dτ dα. (59)

Let us first assume all functions involved are infinitely differentiable. For later purposes
it is furthermore convenient to assume that the functionsρandσ are not necessarily prob-
ability densities, i.e., have averages also different from one. This freedom will be needed
when we approximate piecewise continuous probability densities from above/below by
smoothρ andσ. To be able to use the inclusion principle forψ, we have to replace (59)
by the slightly more general expression

1
λ

∫∫ ∑
m1,n1,m2,n2∈N

ψ1(
π
4 (α1/2m2

1 + α−1/2n2
1)

λ
) ψ2(

π
4 (α1/2m2

2 + α−1/2n2
2)

λ
) ×

× e
(π

4
(α1/2(m2

1 −m2
2) + α−1/2(n2

1 − n2
2)) τ

)
ρ(τ ) σ(α) dτ dα. (60)

We get back to (59) by settingψ1 = ψ2 = ψ. In the sequel,ψ1 andψ2 are taken to be
C∞ with compact support. Let us split the domain of integration overτ into the three
parts corresponding to Regime I, Regime II and Regime III, that is,∫ ∞

0
=
∫ CIλ

−1/2−ε

0
+
∫ CIIλ

−1/2+ε

CIλ−1/2−ε

+
∫ ∞

CIIλ−1/2+ε

and similarly for the integral over the negative axis. The first integral is similar to the
one calculated in Sect. 3 (whereψ1 = ψ2 = ψ), see (39), and we have for largeλ,∫ CIλ

−1/2−ε

−CIλ−1/2−ε

∼ ρ(0)
∫ ∞

0
ψ1(r)ψ2(r)dr

∫
σ(α) dα. (61)

This result can be obtained most easily by replacing the modulus squared of the theta
function,|2f (z1, φ1; z2, φ2)|2, by the product

2f1(z1, φ1; z2, φ2) 2f2(z1, φ1; z2, φ2), (62)

with fν(t1, t2) = ψν(t21 + t22). The function in (62) can still be viewed as a function on
M2

θ, cf. Proposition 2.4.
The second integral vanishes to leading order, due to the bound analogous to bound

(40) valid in Regime II (Sect. 4), so∫ −CIλ
−1/2−ε

−CIIλ−1/2+ε

+
∫ CIIλ

−1/2+ε

CIλ−1/2−ε

� λ2ε(CIIλ
−1/2+ε − CIλ

−1/2−ε) � λ−1/2+3ε. (63)
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We are left with the third integral, where|τ | ≥ CIIλ
−1/2+ε, which we split into two

parts, thediagonalpart

1
λ

∫∫
|τ |≥CIIλ

−1/2+ε

∑
m,n∈N

ψ1(
π
4 (α1/2m2 + α−1/2n2)

λ
) ×

× ψ2(
π
4 (α1/2m2 + α−1/2n2)

λ
) ρ(τ ) σ(α) dτ dα, (64)

which clearly converges forλ → ∞ to the desired expression11

∫ ∞

0
ψ1(r)ψ2(r) dr

∫
ρ(τ ) dτ

∫
σ(α) dα,

and theoff-diagonalpart,

1
λ

∑
(m1,n1)6=(m2,n2)∈N2

∫∫
|τ |≥CIIλ

−1/2+ε
×

× ψ1(
π
4 (α1/2m2

1 + α−1/2n2
1)

λ
)ψ2(

π
4 (α1/2m2

2 + α−1/2n2
2)

λ
) ×

× e(
π

4
(α1/2(m2

1 −m2
2) + α−1/2(n2

1 − n2
2)) τ ) ρ(τ ) σ(α) dτ dα. (65)

Substitutingx1 = π
4α

1/2τ , x2 = π
4α

−1/2τ the last expression equals

1
λ

∑
(m1,n1)6=(m2,n2)∈N2

∫∫
| 2

π

√
x1x2|≥CIIλ

−1/2+ε
×

× ψ1(
π

4

√
x1
x2
m2

1 +
√

x2
x1
n2

1

λ
)ψ2(

π

4

√
x1
x2
m2

2 +
√

x2
x1
n2

2

λ
) ×

× e(x1(m2
1 −m2

2) + x2(n2
1 − n2

2)) h(x1, x2) dx1 dx2, (66)

whereh is related toρ, σ and the Jacobian of the substitution in the obvious way,

h(x1, x2) =
4
π

√
x1

x2
x−1

2 ρ(
4
π

√
x1x2)σ(

x1

x2
). (67)

Let us divide (66) into the sums∑
(m1,n1)6=(m2,n2)∈N2

=
∑

m1 6=m2,n1 6=n2∈N
+

∑
m1 6=m2,n1=n2∈N

+
∑

m1=m2,n1 6=n2∈N
.

Partial integration with respect tox1 andx2 shows the first sum diverges only logarith-
mically inλ, and, after some manipulations, this part of (66) turns out to be bounded by
(use partial integration inx1, x2, and then re-substitute the old variablesτ andα)

11 Notice that the sum overm, n converges to the corresponding Riemann integral.
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� 1
λ

∑
m1 6=m2,n1 6=n2�

√
λ

∫∫
|τ |≥CIIλ

−1/2+ε

ρ(τ )σ(α) dτ dα
τ2 |m2

1 −m2
2| |n2

1 − n2
2|

� 1
λ1−ε′

∫
|τ |≥λ−1/2+ε

ρ(τ )
τ2

dτ � λ−1/2−ε+ε′
∫

|τ |≥1

ρ(τλ−1/2+ε)
τ2

dτ

� λ−1/2−ε+ε′ (68)

for any ε′ > 0. The remaining two sums can be shown to be of non-leading order by
similar means.

We have thus shown so far that forλ → ∞,

1
λ

∑
(m1,n1),(m2,n2)∈N2

∫
ψ1(

π
4 (α1/2m2

1 + α−1/2n2
1)

λ
)ψ2(

π
4 (α1/2m2

2 + α−1/2n2
2)

λ
) ×

× ρ̂(
π

4
(α1/2(m2

1 −m2
2) + α−1/2(n2

1 − n2
2)))σ(α) dα

−→
∫
ψ1(r)ψ2(r) dr

(
ρ(0) +

∫
ρ(τ ) dτ

)∫
σ(α) dα. (69)

Taking finite linear combinationsH(r1, r2) =
∑
ψj1(r1)ψj2(r2) of functions of the

above type, we have

1
λ

∑
(m1,n1),(m2,n2)∈N2

∫
H(

π
4 (α1/2m2

1 + α−1/2n2
1)

λ
,
π
4 (α1/2m2

2 + α−1/2n2
2)

λ
) ×

× ρ̂(
π

4
(α1/2(m2

1 −m2
2) + α−1/2(n2

1 − n2
2)))σ(α) dα

−→
∫
H(r, r) dr

(
ρ(0) +

∫
ρ(τ ) dτ

)∫
σ(α) dα. (70)

Let us now see how the smoothness condition onψ can be relaxed to piecewise
continuousψ with compact support. Following the lines of the proof of Theorem 3.2 in
[51], ψ(r1)ψ(r2) can now be approximated from above/below by smooth test functions
H(r1, r2), which are admissible for the previous derivation and for which∫

|H(r, r) − ψ(r)2| dr < ε. (71)

By the inclusion principle the statement of the proposition holds thus for piecewise
continuousψ. The result can be further extended to piecewise continuousρ andσ by
approximating both sides of the relation

lim
λ→∞

Eρ,σK2,ψ( · , λ) =
(
1 +ρ(0)

) ∫ ∞

0
ψ(r)2dr

from above and below using smooth functionsρε andσε, which areε-close12 to ρ and
σ, respectively. �

12 In the L1 sense but also in the sense that|ρ(0) − ρε(0)| < ε, which is where the continuity ofρ at 0 is
required.
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6.2. The limit distribution – smooth cut-off functions.Let us first consider the simpler
case whenψ is a smooth cut-off function. The results will later be extended to more
general cut-off functions. We denote byS(R+) the space of even functions inS(R),
restricted to the positive half lineR+.

Theorem 6.2. Letψ ∈ S(R+). Then there exists a decreasing function9 : R+ → R+

with

9ψ(0) = 1,
∫ ∞

0
9ψ(R) dR =

∫ ∞

0
ψ(r)2dr,

discontinuous only for at most countably manyR, such that,

lim
λ→∞

Probρ,σ{K2,ψ( · , λ) > R} = 9ψ(R),

except possibly at the discontinuities of9ψ(R).

Theorem 6.3. For R → ∞, we have the asymptotic relation

9ψ(R) = cψR
−2 logR + dψR

−2 +Oψ(R−∞),

where

cψ =
2
π6

∫
R2

|
∫

R2

e(t21u1 + t22u2)ψ(t21 + t22) d2t|4d2u.

The constantdψ is given by a more complicated expression, see the proof of this theorem.

The proofs of these theorems will be given below. The following conjecture is a
direct consequence of the equidistribution hypothesis of Conjecture 5.6, compare the
proof of Theorem 6.2.

Conjecture 6.4. Theorem 6.2 even holds whenα is not random but fixed, as long asα
is diophantine. That means in particular

lim
λ→∞

Probρ{K (α)
2,ψ( · , λ) > R} = 9ψ(R),

with the same function9ψ(R) as before.

This conjecture does not hold whenα is rational or well approximable by rationals,
as we shall see in the next section.

Proof of Theorem 6.2.Apply Corollary 5.5, i.e. relation (58), whereχD is taken to be
the characteristic function of the set

D = {(z1, φ1; z2, φ2) ∈ M2
θ :

1
4π

|2f (z1, φ1; z2, φ2)|2 > R}.

The boundary ofD can only have positive measure for a countable number ofR, other-
wise this would be a contradiction to the measurability of2f . HenceχD is piecewise
continuous except for countably manyR. We chose the functionh(x1, x2) in a way that

h(x1, x2)χD(x1 + i y ef1(x1,x2), 0;x2 + i y ef2(x1,x2), 0)d2x

= DR(τ, α, λ) ρ(τ )σ(α) dτ dα, (72)

where



Spectral form factors of rectangle billiards 193

x1 =
π

4
α1/2τ, x2 =

π

4
α−1/2τ,

y =
π

4
λ−1, f1(x1, x2) = log

√
x1

x2
, f2(x1, x2) = log

√
x2

x1
,

and

DR(τ, α, λ) =

{
1 if K (α)

2,ψ(τ, λ) > R

0 otherwise.

Since the compact intervalA does not contain 0, the functionsf1 andf2 are bounded
on the domain of integration. Hence, except for at most countably manyR,

lim
λ→∞

Probρ,σ{K̂2,ψ( · , λ) > R} = 9ψ(R). (73)

To obtain the same result forK2,ψ, recall that by virtue of (23) we can express the
difference betweenK2,ψ andK̂2,ψ as the sum

λ−1/4F1(z1, φ1; z2, φ2) + λ−1/2F2(z1, φ1; z2, φ2)

+ λ−3/4F3(z1, φ1; z2, φ2) + λ−1ψ(0)2,

where theFj are sums of products of theta functions and their modulus is therefore
majorized by functions onM2

θ; it is therefore clear that

lim
λ→∞

Probρ,σ{|K2,ψ( · , λ) − K̂2,ψ( · , λ)| > ε} = 0 (74)

for arbitrarily small (but fixed)ε > 0. Hence for any givenε > 0, we have

Probρ,σ{K̂2,ψ( · , λ) > R + ε}
≤ Probρ,σ{K2,ψ( · , λ) > R}

≤ Probρ,σ{K̂2,ψ( · , λ) > R− ε}, (75)

for every large enoughλ. The limits9ψ(R+ε) and9ψ(R−ε) of the left- and right-hand
side exist except for countably manyR, ε. Since

{(z1, φ1; z2, φ2) ∈ M2
θ :

1
4π

|2f (z1, φ1; z2, φ2)|2 = R}

has positive measure only for countably manyR, the difference9ψ(R− ε)−9ψ(R+ ε)
can be made arbitrarily small for suitable smallε > 0, except for countably manyR.

Finally, the relation9ψ(0) = 1 holds by definition,13 and the integral of9ψ can be
calculated as follows (notice thatµ(M2

θ) = π4):

13 It might happen that9ψ(ε) ≤ C < 1 for arbitrarily smallε, but since we allow9ψ(R) to be discontin-
uous at countably manyR, it is most sensible to normalize9ψ(0) = 1.
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0
9ψ(R) dR

=
1

µ(M2
θ)

∫ ∞

0
µ{(z1, φ1; z2, φ2) ∈ F :

1
4π

|2f (z1, φ1; z2, φ2)|2 > R} dR

=
1

4π5

∫
M2

θ

|2f |2 d2µ =
1
π

∫
R2

|f (t1, t2)|2 d2t =
∫ ∞

0
ψ(r)2dr, (76)

by virtue of relation (35). �

Proof of Theorem 6.3.It follows from the proof of Theorem 6.2 that for all but countably
manyR (recall the definition of the fundamental regionF in (32))

9ψ(R) =
1
π4
µ{(z1, φ1; z2, φ2) ∈ F :

1
4π

|2f (z1, φ1; z2, φ2)|2 > R}

=
2
π4
µ{(z1, φ1; z2, φ2) ∈ F : y1 > y2 and

1
4π

|2f (z1, φ1; z2, φ2)|2 > R}. (77)

The asymptotics of9ψ(R) is clearly determined by the large values of the theta function
2f (z1, φ1; z2, φ2) in the cusps. By Proposition 2.5 and the refined asymptotic relation

2f (z1, φ1; z2, φ2) = y1/4
1 2f (φ1; z2, φ2) +O(y−∞

1 ) (78)

with the theta function

2f (φ1; z2, φ2) = y1/4
2

∑
n∈Z

fφ1,φ2(0, n y
1/2
2 ) e(n2x2),

we thus have

9ψ(R) =
2
π4
µ{(z1, φ1; z2, φ2) ∈ F : y1 > y2,

y1 > 10 and
1

4π
y

1/2
1 |2f (φ1; z2, φ2)|2 > R} +O(R−∞)

=
2
π4

∫ π

0

∫
Fθ

∫ π

0
min{ 1

y2
,

1
10
, (4πR)−2|2f (φ1; z2, φ2)|4}dφ1

dx2 dy2 dφ2

y2
2

+O(R−∞). (79)

Let us first discuss the integral over the range

1
y2
< (4πR)−2|2f (φ1; z2, φ2)|4, i.e. (4πR)2 < y2|2f (φ1; z2, φ2)|4,

which, for largeR, requiresy2 to be large as well. From the asymptotic relation

2f (φ1; z2, φ2) =

{
y

1/4
2 fφ1,φ2(0, 0) +O(y−∞

2 ) (y2 >
1

100)
O(v−∞

2 ) (v2 >
1

100),
(80)

compare Proposition 2.5, it follows that the integral over the range in concern is bounded
from above and below by the same integral over the rangesy2|fφ1,φ2(0, 0)|2 > 4πR ∓
CMR

−M (for anyM > 2 and a suitable constantCM ) which now can be worked out
to give, forR large enough,
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2
π4

∫ π

0

∫ π

0

∫ ∞

(4πR∓CMR−M )/|fφ1,φ2(0,0)|2

∫ 1

0
min{ 1

y2
,

1
10

}dx2 dy2 dφ2

y2
2

dφ1

=
2
π4

∫ π

0

∫ π

0

∫ ∞

(4πR∓CMR−M )/|fφ1,φ2(0,0)|2

∫ 1

0

dx2 dy2 dφ2

y3
2

dφ1

=
1
π4

(4πR)−2
∫ π

0

∫ π

0
|fφ1,φ2(0, 0)|4 dφ1 dφ2 +OM (R−M ). (81)

As to the remaining range (4πR)2 > y2|2f (φ1; z2, φ2)|4, the same reasoning as
before permits to give the upper and lower bounds

2
π4

∫ π

0

∫ π

0

∫
Fθ((4πR±CMR−M )/|fφ1,φ2(0,0)|2)

×

× min{ 1
10
, (4πR)−2|2f (φ1; z2, φ2)|4}dx2 dy2 dφ2

y2
2

dφ1 (82)

with the truncated fundamental region

Fθ(T ) = {z ∈ Fθ : y < T}.
The above integral, restricted to the range1

10 < (4πR)−2|2f (φ1; z2, φ2)|4, equals

2
10π4

∫ π

0

∫ π

0

∫
(∗)

dy2

y2
2

dφ2 dφ1 +O(R−∞) = O(R−∞), (83)

where the range (∗) of integration of the inner integral is

(4πR)2

10|fφ1,φ2(0, 0)|4 ≤ y2 ≤ 4πR
|fφ1,φ2(0, 0)|2 .

In order to work out the integral over the range1
10 > (4πR)−2|2f (φ1; z2, φ2)|4 let us

define the truncated function

Hf (φ1; z2, φ2) =

{
|2f (φ1; z2, φ2)|4 − y2|fφ1,φ2(0, 0)|4 for y2 > 1
|2f (φ1; z2, φ2)|4 otherwise,

(84)

which is rapidly decreasing in all cusps. The integral over the range under consideration
can now be expressed as

1
8π6R2

∫ π

0

∫ π

0

∫
Fθ

Hf (φ1; z2, φ2)
dx2 dy2 dφ2

y2
2

dφ1

+
1

8π6R2

∫ π

0

∫ π

0

∫ 4πR/|fφ1,φ2(0,0)|2

1
y2|fφ1,φ2(0, 0)|4dy2

y2
2

dφ2 dφ1

+O(R−∞). (85)

The second integral yields

1
8π6R2

logR
∫ π

0

∫ π

0
|fφ1,φ2(0, 0)|4 dφ1 dφ2

+
1

8π6R2

∫ π

0

∫ π

0
|fφ1,φ2(0, 0)|4 log

(
4π/|fφ1,φ2(0, 0)|2) dφ1 dφ2. (86)
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Collecting all leading-order terms in the above estimates, we obtain

9ψ(R) =
1

8π6

{∫ π

0

∫ π

0
|fφ1,φ2(0, 0)|4 dφ1 dφ2

}
R−2 logR

+
1

8π6

{∫ π

0

∫ π

0
|fφ1,φ2(0, 0)|4 log

(
4π/|fφ1,φ2(0, 0)|2) dφ1 dφ2

+
∫ π

0

∫ π

0

∫
Fθ

Hf (φ1; z2, φ2)
dx2 dy2 dφ2

y2
2

dφ1

+
1
2

∫ π

0

∫ π

0
|fφ1,φ2(0, 0)|4 dφ1 dφ2

}
R−2 +O(R−∞). (87)

The coefficientscψ anddψ are thus determined. By virtue of (31) we have, after some
change of variables,∫ π

0

∫ π

0
|fφ1,φ2(0, 0)|4 dφ1 dφ2 = 24

∫
R2

|
∫

R2

e(t21u1 + t22u2) f (t1, t2) d2t|4d2u, (88)

which concludes the proof of Theorem 6.3. �

6.3. The limit distribution – general cut-off functions.We shall now assume only thatf
(and thusψ) is piecewise continuous and of compact support.

Theorem 6.5. Letψ be piecewise continuous and of compact support. Then there exists
a decreasing function9 : R+ → R+ with

9ψ(0) = 1,
∫ ∞

0
9ψ(R) dR =

∫ ∞

0
ψ(r)2dr,

discontinuous only for at most countably manyR, such that,

lim
λ→∞

Probρ,σ{K2,ψ( · , λ) > R} = 9ψ(R),

except possibly at the discontinuities of9ψ(R).

Proof. The proof follows along the lines of the proof of Theorem 4 in [46]. For a given
ε > 0 choose a functionψε ∈ C∞(R+) of compact support, such that∫ ∞

0
|ψ(r) − ψε(r)|2 dr < ε. (89)

The crucial observation is that, forλ large enough, we have∫
I

∫
A

K (α)
2,ψ−ψε

(τ, λ) dτ dα ≤ Cε, (90)

for some constantC independent ofλ andε. This fact is a consequence of Proposition
6.1 and Condition (89).

Consider the set

Sεy = {τ ∈ I, α ∈ A : K (α)
2,ψ−ψε

(τ, λ) < ε1/2}.
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The integral over the complement of this set must satisfy

Cε >

∫∫
(I×A)−Sε

y

K (α)
2,ψ−ψε

(τ, λ) dτ dα ≥
∫∫

(I×A)−Sε
y

ε1/2 dτ dα,

hence

|Sεy| > |I| |A| − Cε1/2. (91)

Define the distribution function

DR,ψ(τ, α, λ) =

{
1 if K (α)

2,ψ(τ, λ) > R

0 otherwise,
(92)

and the probability

9ψ,y(R) =
∫
I

∫
A

DR,ψ(τ, α, λ) ρ(τ ) σ(α) dτ dα. (93)

By virtue of (91) we have the inclusions

9ψε,y(R + ε1/2) − C ′ε1/2 ≤ 9ψ,y(R) ≤ 9ψε,y(R− ε1/2) +C ′ε1/2, (94)

whereC ′ does not depend onε, y, R. By Theorem 6.2, fory → 0, the left and right
hand side have the limits

lim
y→0

9ψε,y(R± ε1/2) = 9ψε (R± ε1/2) (95)

except for countably manyR, ε. Some analysis shows (for details compare [46]) that for
everyδ > 0 there is anε > 0 such that

9ψε
(R− ε1/2) − 9ψε

(R + ε1/2) < δ (96)

(except for countably manyR). Hence there is a function9ψ(R) such that

lim
y→0

9ψ,y(R) = 9ψ(R), (97)

which proves the claim. �

6.4. Random walks.

Proof of Theorem 1.1.The task is to show that the difference between

Probρ,σ
{∣∣∣∣ 1√

N

N∑
j=1

e(λ(α)
j τ )

∣∣∣∣2 > R

}
and

Probρ,σ
{∣∣∣∣ 1√

N

∑
λ(α)

j
≤N

e(λ(α)
j τ )

∣∣∣∣2 > R

}
vanishes forN → ∞, since then Theorem 1.1 will follow from Theorem 6.5. First
notice that
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∣∣∣∣ 1√
N

N∑
j=1

e(λ(α)
j τ ) − 1√

N

∑
λ(α)

j
≤N

e(λ(α)
j τ )

∣∣∣∣2 =

∣∣∣∣ 1√
N

∑
j∈X (α)

N

e(λ(α)
j τ )

∣∣∣∣2, (98)

whereX (α)
N is the set ofj defined by

X (α)
N = {j ≤ N : λ(α)

j > N} ∪ {j > N : λ(α)
j ≤ N}.

From the asymptotic relation (12) it can be readily seen that the number of elements in
X (α)
N is bounded by

#X (α)
N �

√
N, (99)

where the implied constant does not depend onα ∈ A (A fixed). It is therefore clear
from the calculation done to prove Proposition 6.1 that∫

I

∫
A

∣∣∣∣ 1√
N

∑
j∈X (α)

N

e(λ(α)
j τ )

∣∣∣∣2 dτ dα (100)

vanishes for largeN . Hence we can use the inclusion principle in the same fashion as
in the proof of Theorem 6.5 (the vanishing of (100) is the analogue of relation (90)) to
prove the existence of the limit9(R), which furthermore has to equal9(R) = 9χ(R),
with χ the characteristic function of the interval [0, 1]. �

7. Rational α

The simplest case isα = 1, sincez1 = z2 and so the form factor is related to the theta
function2f (z, φ; z, φ) by

K̂ (1)
2,ψ(τ, λ) =

1
4π

|2f (z, 0;z, 0)|2.

The functionF (z, φ) = |2f (z, φ; z, φ)|2 can now be viewed as a function on the manifold
Mθ, which is embedded as a three-dimensional submanifold inM2

θ, and we can apply
the theorems which were developed in the beginning of Sect. 5. This observation holds
in a similar way for all rationalα = p

q ; however, the corresponding embedded three-

manifold M p
q

becomes densely distributed inM2
θ when the sequence of rationalspq

approaches an irrational. Let us discuss this in more detail.
For a given integerN we define the congruence subgroups00(N ) of SL(2,Z) by

00(N ) =

{(
a b
c d

)
∈ SL(2,Z) : c ≡ 0 modN

}
. (101)

With

ηN =

(
N 0
0 1

)
we find [58] that

00(N ) = η−1
N SL(2,Z)ηN ∩ SL(2,Z). (102)
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The index of these subgroups in SL(2,Z) is finite, more precisely [58],

[SL(2,Z) : 00(N )] = N
∏
p prime
p|N

(1 +p−1). (103)

Consider now the form factor for rationalα = p
q ,

K̂
( p

q )

2,ψ(τ, λ) =
1

4π
|2f (z1, 0;z2, 0)|2 =

1
4π

|2f (pz, 0;qz, 0)|2, (104)

with
z =

z1

p
=
z2

q
=

π

4
√
pq

(τ + i λ−1).

For γ̃ = η−1
p γηp with γ =

(
a b
c d

) ∈ 00(4) we have the functional relations

|2f (pγ̃z, φ + arg(pc z + d); qz, φ)|2
= |2f (γpz, φ + arg(c pz + d); qz, φ)|2 = |2f (pz, φ; qz, φ)|2, (105)

and similarly

|2f (pz, φ; qγ̃z, φ + arg(qc z + d))|2 = |2f (pz, φ; qz, φ)|2 (106)

for γ̃ = η−1
q γηq with γ ∈ 00(4). Therefore the function

|2( p
q )

f (z, φ)|2 = |2f (pz, φ; qz, φ)|2 (107)

is invariant under the group

0( p
q ) = η−1

p 00(4)ηp ∩ η−1
q 00(4)ηq,

which, by virtue of (102), contains the congruence group00(4pq) ⊂ 0( p
q ); hence0( p

q )

is of finite index in SL(2,Z) andM p
q

= 0( p
q )\ SL(2,R) has finite volume.

Using the theory developed in [46, 48] and the equidistribution of horocycles (Corol-
lary 5.2) we can now prove the analog statements of the previous sections, but now for
rationalα.

7.1. The expectation value.

Proposition 7.1. Let ψ be piecewise continuous and of compact support. Then, for
λ → ∞,

EρK
( p

q )

2,ψ( · , λ) ∼ b
( p

q )

ψ logλ

for some constantb
( p

q )

ψ . In the casepq = 1 we have in particular

b(1)
ψ =

1
π

∫ ∞

0
ψ(r)2 dr.
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Sketch of the proof.The function|2( p
q )

f (z, φ)|2 onM p
q

= 0( p
q )\ SL(2,R) is not bounded

so Corollary 5.2 is not directly applicable. However, there is a way of resolving this
difficulty using a regularization with Eisenstein series, see [46, 48] for details. Compare
alternatively Jurkat and van Horne [39] for a different approach.�

7.2. The limit distribution.

Theorem 7.2. Letψ be piecewise continuous and of compact support. Then there exists

a decreasing function9
( p

q )

ψ with 9
( p

q )

ψ (0) = 1, discontinuous for at most countably many
R, such that,

lim
λ→∞

Probρ{K ( p
q )

2,ψ( · , λ) > R} = 9
( p

q )

ψ (R),

except possibly at the discontinuities of9
( p

q )

ψ (R). For largeR,

9
( p

q )

ψ (R) ∼ c
( p

q )

ψ R−1,

with some constantc
( p

q )

ψ , which in the special casepq = 1 reads

c(1)
ψ =

1
π

∫ ∞

0
ψ(r)2 dr.

Sketch of the proof.Simply use Corollary 5.2, and proceed as in the proof of Theorems
6.2 and 6.5. Compare also the corresponding theorems in [46, 47, 48] and Jurkat and
van Horne’s results [37, 38, 39]. �
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