Extensions 1→N→G→Q→1 with N=C9 and Q=C3×C9

Direct product G=N×Q with N=C9 and Q=C3×C9
dρLabelID
C3×C92243C3xC9^2243,31

Semidirect products G=N:Q with N=C9 and Q=C3×C9
extensionφ:Q→Aut NdρLabelID
C91(C3×C9) = C9×3- 1+2φ: C3×C9/C9C3 ⊆ Aut C981C9:1(C3xC9)243,36
C92(C3×C9) = C3×C9⋊C9φ: C3×C9/C32C3 ⊆ Aut C9243C9:2(C3xC9)243,33

Non-split extensions G=N.Q with N=C9 and Q=C3×C9
extensionφ:Q→Aut NdρLabelID
C9.1(C3×C9) = C27○He3φ: C3×C9/C9C3 ⊆ Aut C9813C9.1(C3xC9)243,50
C9.2(C3×C9) = C27⋊C9φ: C3×C9/C32C3 ⊆ Aut C9279C9.2(C3xC9)243,22
C9.3(C3×C9) = C923C3φ: C3×C9/C32C3 ⊆ Aut C981C9.3(C3xC9)243,34
C9.4(C3×C9) = C3×C27⋊C3φ: C3×C9/C32C3 ⊆ Aut C981C9.4(C3xC9)243,49
C9.5(C3×C9) = C272C9central extension (φ=1)243C9.5(C3xC9)243,11
C9.6(C3×C9) = C81⋊C3central extension (φ=1)813C9.6(C3xC9)243,24

׿
×
𝔽