Extensions 1→N→G→Q→1 with N=C3×C9 and Q=C9

Direct product G=N×Q with N=C3×C9 and Q=C9
dρLabelID
C3×C92243C3xC9^2243,31

Semidirect products G=N:Q with N=C3×C9 and Q=C9
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1C9 = C3.C92φ: C9/C3C3 ⊆ Aut C3×C9243(C3xC9):1C9243,2
(C3×C9)⋊2C9 = C32.19He3φ: C9/C3C3 ⊆ Aut C3×C981(C3xC9):2C9243,14
(C3×C9)⋊3C9 = C32.20He3φ: C9/C3C3 ⊆ Aut C3×C981(C3xC9):3C9243,15
(C3×C9)⋊4C9 = C3×C9⋊C9φ: C9/C3C3 ⊆ Aut C3×C9243(C3xC9):4C9243,33
(C3×C9)⋊5C9 = C923C3φ: C9/C3C3 ⊆ Aut C3×C981(C3xC9):5C9243,34

Non-split extensions G=N.Q with N=C3×C9 and Q=C9
extensionφ:Q→Aut NdρLabelID
(C3×C9).1C9 = C272C9φ: C9/C3C3 ⊆ Aut C3×C9243(C3xC9).1C9243,11
(C3×C9).2C9 = C32⋊C27φ: C9/C3C3 ⊆ Aut C3×C981(C3xC9).2C9243,12
(C3×C9).3C9 = C9.4He3φ: C9/C3C3 ⊆ Aut C3×C9273(C3xC9).3C9243,16
(C3×C9).4C9 = C9⋊C27φ: C9/C3C3 ⊆ Aut C3×C9243(C3xC9).4C9243,21
(C3×C9).5C9 = C81⋊C3φ: C9/C3C3 ⊆ Aut C3×C9813(C3xC9).5C9243,24
(C3×C9).6C9 = C3×C27⋊C3φ: C9/C3C3 ⊆ Aut C3×C981(C3xC9).6C9243,49

׿
×
𝔽