Extensions 1→N→G→Q→1 with N=C9 and Q=3- 1+2

Direct product G=N×Q with N=C9 and Q=3- 1+2
dρLabelID
C9×3- 1+281C9xES-(3,1)243,36

Semidirect products G=N:Q with N=C9 and Q=3- 1+2
extensionφ:Q→Aut NdρLabelID
C913- 1+2 = C927C3φ: 3- 1+2/C9C3 ⊆ Aut C981C9:1ES-(3,1)243,43
C923- 1+2 = C929C3φ: 3- 1+2/C9C3 ⊆ Aut C981C9:2ES-(3,1)243,47
C933- 1+2 = C9⋊3- 1+2φ: 3- 1+2/C32C3 ⊆ Aut C981C9:3ES-(3,1)243,41

Non-split extensions G=N.Q with N=C9 and Q=3- 1+2
extensionφ:Q→Aut NdρLabelID
C9.13- 1+2 = C9.5He3φ: 3- 1+2/C9C3 ⊆ Aut C9813C9.1ES-(3,1)243,19
C9.23- 1+2 = C9.6He3φ: 3- 1+2/C9C3 ⊆ Aut C9813C9.2ES-(3,1)243,20
C9.33- 1+2 = C928C3φ: 3- 1+2/C9C3 ⊆ Aut C981C9.3ES-(3,1)243,46
C9.43- 1+2 = C9.4He3φ: 3- 1+2/C32C3 ⊆ Aut C9273C9.4ES-(3,1)243,16
C9.53- 1+2 = C27⋊C9φ: 3- 1+2/C32C3 ⊆ Aut C9279C9.5ES-(3,1)243,22
C9.63- 1+2 = C32⋊C27central extension (φ=1)81C9.6ES-(3,1)243,12
C9.73- 1+2 = C9⋊C27central extension (φ=1)243C9.7ES-(3,1)243,21

׿
×
𝔽