Extensions 1→N→G→Q→1 with N=C3×C27 and Q=C3

Direct product G=N×Q with N=C3×C27 and Q=C3
dρLabelID
C32×C27243C3^2xC27243,48

Semidirect products G=N:Q with N=C3×C27 and Q=C3
extensionφ:Q→Aut NdρLabelID
(C3×C27)⋊1C3 = C32⋊C27φ: C3/C1C3 ⊆ Aut C3×C2781(C3xC27):1C3243,12
(C3×C27)⋊2C3 = C9.5He3φ: C3/C1C3 ⊆ Aut C3×C27813(C3xC27):2C3243,19
(C3×C27)⋊3C3 = C9.6He3φ: C3/C1C3 ⊆ Aut C3×C27813(C3xC27):3C3243,20
(C3×C27)⋊4C3 = C3×C27⋊C3φ: C3/C1C3 ⊆ Aut C3×C2781(C3xC27):4C3243,49
(C3×C27)⋊5C3 = C27○He3φ: C3/C1C3 ⊆ Aut C3×C27813(C3xC27):5C3243,50

Non-split extensions G=N.Q with N=C3×C27 and Q=C3
extensionφ:Q→Aut NdρLabelID
(C3×C27).1C3 = C9⋊C27φ: C3/C1C3 ⊆ Aut C3×C27243(C3xC27).1C3243,21
(C3×C27).2C3 = C272C9φ: C3/C1C3 ⊆ Aut C3×C27243(C3xC27).2C3243,11
(C3×C27).3C3 = C81⋊C3φ: C3/C1C3 ⊆ Aut C3×C27813(C3xC27).3C3243,24

׿
×
𝔽