Extensions 1→N→G→Q→1 with N=C3 and Q=C3≀C3

Direct product G=N×Q with N=C3 and Q=C3≀C3
dρLabelID
C3×C3≀C327C3xC3wrC3243,51


Non-split extensions G=N.Q with N=C3 and Q=C3≀C3
extensionφ:Q→Aut NdρLabelID
C3.1C3≀C3 = C33⋊C9central extension (φ=1)27C3.1C3wrC3243,13
C3.2C3≀C3 = He3⋊C9central extension (φ=1)81C3.2C3wrC3243,17
C3.3C3≀C3 = 3- 1+2⋊C9central extension (φ=1)81C3.3C3wrC3243,18
C3.4C3≀C3 = C32.24He3central stem extension (φ=1)81C3.4C3wrC3243,3
C3.5C3≀C3 = C33.C32central stem extension (φ=1)81C3.5C3wrC3243,4
C3.6C3≀C3 = C33.3C32central stem extension (φ=1)81C3.6C3wrC3243,5
C3.7C3≀C3 = C32.27He3central stem extension (φ=1)81C3.7C3wrC3243,6
C3.8C3≀C3 = C32.28He3central stem extension (φ=1)81C3.8C3wrC3243,7

׿
×
𝔽