Extensions 1→N→G→Q→1 with N=C3 and Q=He3.C3

Direct product G=N×Q with N=C3 and Q=He3.C3
dρLabelID
C3×He3.C381C3xHe3.C3243,52


Non-split extensions G=N.Q with N=C3 and Q=He3.C3
extensionφ:Q→Aut NdρLabelID
C3.1(He3.C3) = C32.19He3central extension (φ=1)81C3.1(He3.C3)243,14
C3.2(He3.C3) = He3⋊C9central extension (φ=1)81C3.2(He3.C3)243,17
C3.3(He3.C3) = 3- 1+2⋊C9central extension (φ=1)81C3.3(He3.C3)243,18
C3.4(He3.C3) = C33.C32central stem extension (φ=1)81C3.4(He3.C3)243,4
C3.5(He3.C3) = C33.3C32central stem extension (φ=1)81C3.5(He3.C3)243,5
C3.6(He3.C3) = C32.27He3central stem extension (φ=1)81C3.6(He3.C3)243,6
C3.7(He3.C3) = C32.29He3central stem extension (φ=1)81C3.7(He3.C3)243,8
C3.8(He3.C3) = C33.7C32central stem extension (φ=1)81C3.8(He3.C3)243,9

׿
×
𝔽