Extensions 1→N→G→Q→1 with N=C3×2+ 1+4 and Q=C3

Direct product G=N×Q with N=C3×2+ 1+4 and Q=C3
dρLabelID
C32×2+ 1+472C3^2xES+(2,2)288,1022

Semidirect products G=N:Q with N=C3×2+ 1+4 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3×2+ 1+4)⋊1C3 = C3×Q8.A4φ: C3/C1C3 ⊆ Out C3×2+ 1+4724(C3xES+(2,2)):1C3288,984
(C3×2+ 1+4)⋊2C3 = C3×C23⋊A4φ: C3/C1C3 ⊆ Out C3×2+ 1+4244(C3xES+(2,2)):2C3288,987

Non-split extensions G=N.Q with N=C3×2+ 1+4 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3×2+ 1+4).1C3 = 2+ 1+4⋊C9φ: C3/C1C3 ⊆ Out C3×2+ 1+4724(C3xES+(2,2)).1C3288,348
(C3×2+ 1+4).2C3 = 2+ 1+42C9φ: C3/C1C3 ⊆ Out C3×2+ 1+4724(C3xES+(2,2)).2C3288,351
(C3×2+ 1+4).3C3 = C9×2+ 1+4φ: trivial image724(C3xES+(2,2)).3C3288,371

׿
×
𝔽