Extensions 1→N→G→Q→1 with N=C3xC3.A4 and Q=C3

Direct product G=NxQ with N=C3xC3.A4 and Q=C3
dρLabelID
C32xC3.A4162C3^2xC3.A4324,133

Semidirect products G=N:Q with N=C3xC3.A4 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3xC3.A4):1C3 = C62.16C32φ: C3/C1C3 ⊆ Out C3xC3.A4108(C3xC3.A4):1C3324,52
(C3xC3.A4):2C3 = He3.A4φ: C3/C1C3 ⊆ Out C3xC3.A4549(C3xC3.A4):2C3324,53
(C3xC3.A4):3C3 = He3:A4φ: C3/C1C3 ⊆ Out C3xC3.A4549(C3xC3.A4):3C3324,54
(C3xC3.A4):4C3 = 3- 1+2:A4φ: C3/C1C3 ⊆ Out C3xC3.A4549(C3xC3.A4):4C3324,57
(C3xC3.A4):5C3 = C62:C9φ: C3/C1C3 ⊆ Out C3xC3.A454(C3xC3.A4):5C3324,59
(C3xC3.A4):6C3 = C3xC9:A4φ: C3/C1C3 ⊆ Out C3xC3.A4108(C3xC3.A4):6C3324,127
(C3xC3.A4):7C3 = He3.2A4φ: C3/C1C3 ⊆ Out C3xC3.A4549(C3xC3.A4):7C3324,129
(C3xC3.A4):8C3 = C62.9C32φ: C3/C1C3 ⊆ Out C3xC3.A4549(C3xC3.A4):8C3324,132
(C3xC3.A4):9C3 = C3xC32.A4φ: C3/C1C3 ⊆ Out C3xC3.A454(C3xC3.A4):9C3324,134
(C3xC3.A4):10C3 = A4xC3xC9φ: trivial image108(C3xC3.A4):10C3324,126

Non-split extensions G=N.Q with N=C3xC3.A4 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3xC3.A4).1C3 = C62.12C32φ: C3/C1C3 ⊆ Out C3xC3.A4162(C3xC3.A4).1C3324,48
(C3xC3.A4).2C3 = C62.C32φ: C3/C1C3 ⊆ Out C3xC3.A4549(C3xC3.A4).2C3324,56
(C3xC3.A4).3C3 = C62.11C32φ: C3/C1C3 ⊆ Out C3xC3.A4162(C3xC3.A4).3C3324,47
(C3xC3.A4).4C3 = C9xC3.A4φ: trivial image162(C3xC3.A4).4C3324,46

׿
x
:
Z
F
o
wr
Q
<