Extensions 1→N→G→Q→1 with N=C21 and Q=C7⋊C3

Direct product G=N×Q with N=C21 and Q=C7⋊C3
dρLabelID
C7⋊C3×C21633C7:C3xC21441,10

Semidirect products G=N:Q with N=C21 and Q=C7⋊C3
extensionφ:Q→Aut NdρLabelID
C211(C7⋊C3) = C3×C72⋊C3φ: C7⋊C3/C7C3 ⊆ Aut C21147C21:1(C7:C3)441,11
C212(C7⋊C3) = C3×C723C3φ: C7⋊C3/C7C3 ⊆ Aut C21633C21:2(C7:C3)441,12

Non-split extensions G=N.Q with N=C21 and Q=C7⋊C3
extensionφ:Q→Aut NdρLabelID
C21.1(C7⋊C3) = C49⋊C9φ: C7⋊C3/C7C3 ⊆ Aut C214413C21.1(C7:C3)441,1
C21.2(C7⋊C3) = C3×C49⋊C3φ: C7⋊C3/C7C3 ⊆ Aut C211473C21.2(C7:C3)441,3
C21.3(C7⋊C3) = C72⋊C9φ: C7⋊C3/C7C3 ⊆ Aut C21441C21.3(C7:C3)441,6
C21.4(C7⋊C3) = C723C9φ: C7⋊C3/C7C3 ⊆ Aut C21633C21.4(C7:C3)441,7
C21.5(C7⋊C3) = C7×C7⋊C9central extension (φ=1)633C21.5(C7:C3)441,5

׿
×
𝔽