Extensions 1→N→G→Q→1 with N=C3xC9:S3 and Q=C3

Direct product G=NxQ with N=C3xC9:S3 and Q=C3
dρLabelID
C32xC9:S354C3^2xC9:S3486,227

Semidirect products G=N:Q with N=C3xC9:S3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3xC9:S3):1C3 = C3xC32:D9φ: C3/C1C3 ⊆ Out C3xC9:S354(C3xC9:S3):1C3486,94
(C3xC9:S3):2C3 = C3xHe3.S3φ: C3/C1C3 ⊆ Out C3xC9:S3546(C3xC9:S3):2C3486,119
(C3xC9:S3):3C3 = C3xHe3.2S3φ: C3/C1C3 ⊆ Out C3xC9:S3546(C3xC9:S3):3C3486,122
(C3xC9:S3):4C3 = C3xC33.S3φ: C3/C1C3 ⊆ Out C3xC9:S354(C3xC9:S3):4C3486,232
(C3xC9:S3):5C3 = C3xHe3.4S3φ: C3/C1C3 ⊆ Out C3xC9:S3546(C3xC9:S3):5C3486,234

Non-split extensions G=N.Q with N=C3xC9:S3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3xC9:S3).1C3 = C9:S3:C9φ: C3/C1C3 ⊆ Out C3xC9:S354(C3xC9:S3).1C3486,3
(C3xC9:S3).2C3 = (C3xC9):C18φ: C3/C1C3 ⊆ Out C3xC9:S3546(C3xC9:S3).2C3486,20
(C3xC9:S3).3C3 = C9:S3:3C9φ: C3/C1C3 ⊆ Out C3xC9:S3546(C3xC9:S3).3C3486,22
(C3xC9:S3).4C3 = C9:(S3xC9)φ: C3/C1C3 ⊆ Out C3xC9:S354(C3xC9:S3).4C3486,138
(C3xC9:S3).5C3 = C92:3S3φ: C3/C1C3 ⊆ Out C3xC9:S3546(C3xC9:S3).5C3486,139
(C3xC9:S3).6C3 = C9xC9:S3φ: trivial image54(C3xC9:S3).6C3486,133

׿
x
:
Z
F
o
wr
Q
<