Extensions 1→N→G→Q→1 with N=C3×C9⋊S3 and Q=C3

Direct product G=N×Q with N=C3×C9⋊S3 and Q=C3
dρLabelID
C32×C9⋊S354C3^2xC9:S3486,227

Semidirect products G=N:Q with N=C3×C9⋊S3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3×C9⋊S3)⋊1C3 = C3×C32⋊D9φ: C3/C1C3 ⊆ Out C3×C9⋊S354(C3xC9:S3):1C3486,94
(C3×C9⋊S3)⋊2C3 = C3×He3.S3φ: C3/C1C3 ⊆ Out C3×C9⋊S3546(C3xC9:S3):2C3486,119
(C3×C9⋊S3)⋊3C3 = C3×He3.2S3φ: C3/C1C3 ⊆ Out C3×C9⋊S3546(C3xC9:S3):3C3486,122
(C3×C9⋊S3)⋊4C3 = C3×C33.S3φ: C3/C1C3 ⊆ Out C3×C9⋊S354(C3xC9:S3):4C3486,232
(C3×C9⋊S3)⋊5C3 = C3×He3.4S3φ: C3/C1C3 ⊆ Out C3×C9⋊S3546(C3xC9:S3):5C3486,234

Non-split extensions G=N.Q with N=C3×C9⋊S3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C3×C9⋊S3).1C3 = C9⋊S3⋊C9φ: C3/C1C3 ⊆ Out C3×C9⋊S354(C3xC9:S3).1C3486,3
(C3×C9⋊S3).2C3 = (C3×C9)⋊C18φ: C3/C1C3 ⊆ Out C3×C9⋊S3546(C3xC9:S3).2C3486,20
(C3×C9⋊S3).3C3 = C9⋊S33C9φ: C3/C1C3 ⊆ Out C3×C9⋊S3546(C3xC9:S3).3C3486,22
(C3×C9⋊S3).4C3 = C9⋊(S3×C9)φ: C3/C1C3 ⊆ Out C3×C9⋊S354(C3xC9:S3).4C3486,138
(C3×C9⋊S3).5C3 = C923S3φ: C3/C1C3 ⊆ Out C3×C9⋊S3546(C3xC9:S3).5C3486,139
(C3×C9⋊S3).6C3 = C9×C9⋊S3φ: trivial image54(C3xC9:S3).6C3486,133

׿
×
𝔽