Extensions 1→N→G→Q→1 with N=C3×C9 and Q=C3

Direct product G=N×Q with N=C3×C9 and Q=C3
dρLabelID
C32×C981C3^2xC981,11

Semidirect products G=N:Q with N=C3×C9 and Q=C3
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1C3 = C32⋊C9φ: C3/C1C3 ⊆ Aut C3×C927(C3xC9):1C381,3
(C3×C9)⋊2C3 = He3.C3φ: C3/C1C3 ⊆ Aut C3×C9273(C3xC9):2C381,8
(C3×C9)⋊3C3 = He3⋊C3φ: C3/C1C3 ⊆ Aut C3×C9273(C3xC9):3C381,9
(C3×C9)⋊4C3 = C3×3- 1+2φ: C3/C1C3 ⊆ Aut C3×C927(C3xC9):4C381,13
(C3×C9)⋊5C3 = C9○He3φ: C3/C1C3 ⊆ Aut C3×C9273(C3xC9):5C381,14

Non-split extensions G=N.Q with N=C3×C9 and Q=C3
extensionφ:Q→Aut NdρLabelID
(C3×C9).1C3 = C9⋊C9φ: C3/C1C3 ⊆ Aut C3×C981(C3xC9).1C381,4
(C3×C9).2C3 = C3.He3φ: C3/C1C3 ⊆ Aut C3×C9273(C3xC9).2C381,10
(C3×C9).3C3 = C27⋊C3φ: C3/C1C3 ⊆ Aut C3×C9273(C3xC9).3C381,6

׿
×
𝔽