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1 Measure theory

1.1 General construction of Lebesgue measure

In this section we will do the general construction of σ-additive complete
measure by extending initial σ-additive measure on a semi-ring to a measure
on σ-algebra generated by this semi-ring and then completing this measure
by adding to the σ-algebra all the null sets. This section provides you
with the essentials of the construction and make some parallels with the
construction on the plane.

Throughout these section we will deal with some collection of sets whose
elements are subsets of some fixed abstract set X. It is not necessary to
assume any topology on X but for simplicity you may imagine X = Rn.

We start with some important definitions:

Definition 1.1 A nonempty collection of sets S is a semi-ring if

1. Empty set ∅ ∈ S;

2. If A ∈ S, B ∈ S then A ∩ B ∈ S;

3. If A ∈ S, A ⊃ A1 ∈ S then A = ∪n
k=1Ak, where Ak ∈ S for all

1 ≤ k ≤ n and Ak are disjoint sets.

If the set X ∈ S then S is called semi-algebra, the set X is called a unit of
the collection of sets S.

Example 1.1 The collection S of intervals [a, b) for all a, b ∈ R form a
semi-ring since

1. empty set ∅ = [a, a) ∈ S;

2. if A ∈ S and B ∈ S then A = [a, b) and B = [c, d). Obviously
the intersection A ∩ B is either empty set or an interval. Therefore
A ∩ B ∈ S;

3. if A ∈ S, A ⊃ A1 ∈ S then A = [a, b) and A1 = [c, d), where c ≥ a and
d ≤ b. Obviously you may find two intervals [a, c) ∈ S and [d, b) ∈ S

such that [a, b) = [a, c) ∪ [c, d) ∪ [d, b).
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Note that S is not a semi-algebra since all those intervals are subsets of R

but R can not be represented as an interval of form [a, b) (−∞ /∈ R, but R

can be represented as a countable union of such intervals).

Exercise 1.1 Show that the collection S of intervals [a, b) for all a, b ∈ [0, 1]
form a semi-algebra

Exercise 1.2 Let S be the collection of rectangles in the plane (x, y) defined
by one of the inequalities of the form

a ≤ x ≤ b, a < x ≤ b, a ≤ x < b, a < x < b

and one of the inequalities of the form

c ≤ y ≤ d, c < y ≤ d, c ≤ y < d, c < y < d.

Show that

• if a, b, c, d are arbitrary numbers in R then S is a semi-ring;

• if a, b, c, d are arbitrary numbers in [0, 1] then S is a semi-algebra.

Definition 1.2 A nonempty collection of sets R is a ring if

1. Empty set ∅ ∈ R;

2. If A ∈ R, B ∈ R then A ∩ B ∈ R, A ∪ B ∈ R, and A \ B ∈ R.

If the set X ∈ R then R is called an algebra.

Exercise 1.3 We call a set A ⊂ R2 elementary if it can be written, in
at least one way, as a finite union of disjoint rectangles from exercise 1.2.
Show that the collection of elementary sets R form a ring.

Definition 1.3 A set function µ(A) defined on a collection of sets Sµ is a
measure if

1. Its domain of definition Sµ is a semi-ring;
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2. µ(A) ≥ 0 for all A ∈ Sµ;

3. If A1, A2 ∈ Sµ are disjoint sets and Sµ 3 A = A1 ∪ A2 then

µ(A) = µ(A1) + µ(A2)

Note that µ(∅) = 0 since µ(∅) = µ(∅) + µ(∅)

Example 1.2 If we define a set function m on a semi-ring of rectangles S

from exercise 1.2 like:

1. m(∅) = 0;

2. If R ∈ S is a nonempty rectangle (closed, open or half open) defined
by the numbers a, b, c, d then m(R) = (b − a) ∗ (d − c)

It is easy to check that m is a measure on S.

The following lemmas are going to be used in the notes. The proof is not
difficult and is left as an exercise.

Lemma 1.1 The intersection R = ∩αRα of an arbitrary number of rings
is a ring.

Lemma 1.2 If S is an arbitrary nonempty collection of sets there exists
precisely one ring R(S) containing S and contained in every ring R con-
taining S. This ring R(S) is called the minimal ring over collection S (or
the ring generated by S).

Lemma 1.3 If S is a semi-ring then R(S) coincides with the collection of
sets A that admit a finite partition

A = ∪n
k=1Ak, Ak ∈ S, Ai ∩ Aj = ∅.

Definition 1.4 A measure µ is an extension of measure m if domain of
definition Sµ of measure µ contains domain of definition Sm of measure m
(Sm ⊂ Sµ) and

µ(A) = m(A) for all A ∈ Sm.

Exercise 1.4 Take X = [0, 1] × [0, 1] and consider the collection S of all
rectangles from exercise 1.2 that are subsets of X. Define a measure m on
S like in example 1.2. Show that it is possible to extend this measure m to
a measure m′ on the collection R of elementary sets from exercise 1.3 that
are subsets of X.
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Note that in the above exercise the domain of definition of m′ is actually a
minimal algebra R containing semi-algebra S – domain of definition of m,
we write it as Rm′ = R(Sm) (you can also say that Rm′ is generated by
Sm). And therefore m′ is actually an extension of m from semi-algebra to
an algebra. This can be generalized into the following theorem.

Theorem 1.5 Every measure m(A) whose domain of definition Sm is a
semi-ring has unique extension µ(A) whose domain of definition Rµ is a
ring generated by Sm, i.e. Rµ = R(Sm).

Proof For every set A ∈ Rµ there exists a partition

A = ∪n
i=1Bi, where Bi ∈ Sm (1)

We define

µ(A) =
n
∑

i=1

m(Bi) (2)

The value of µ(A) is independent of the partition (1). To see this we assume
that there are two partitions of A: A = ∪n

i=1Bi = ∪k
j=1Qj, where Bi, Qj ∈

Sm and Bi ∩ Bj = ∅, Qi ∩ Qj = ∅ for i 6= j. Since Bi ∩ Qj ∈ Sm and by
additivity property of a measure m we have

n
∑

i=1

m(Bi) =
n
∑

i=1

k
∑

j=1

m(Bi ∩ Qj) =
k
∑

j=1

n
∑

i=1

m(Bi ∩ Qj) =
k
∑

j=1

m(Qj)

So µ(A) is well defined. Obviously µ is nonnegative and additive. This takes
care of existence part.

Let us show its uniqueness. Suppose there are two measures µ and µ̃
that are extensions of m. For any A ∈ R(Sm) we have A = ∪n

i=1Bi, where
Bi ∈ Sm. By definition of extension µ(Bi) = µ̃(Bi) = m(Bi), so using
additivity of a measure:

µ̃(A) =
n
∑

i=1

µ̃(Bi) =
n
∑

i=1

µ(Bi) = µ(A)

So µ and µ̃ coincide. Theorem is proved.

Note that we proved not only existence of an extension but also its unique-
ness. It allows us to claim that measure m′ defined on the collection of
elementary sets is the only possible extension of the measure m defined on
the collection of all rectangles.
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Definition 1.6 A measure µ is called semiadditive (or countably subaddi-
tive) if for any A,A1, A2, ... ∈ Sµ such that A ⊂ ∪∞

n=1An

µ(A) ≤
∞
∑

n=1

µ(An)

Definition 1.7 A measure µ is called σ-additive if for any A,A1, A2, ... ∈
Sµ such that A = ∪∞

n=1An and {An} are disjoint

µ(A) =

∞
∑

n=1

µ(An)

Theorem 1.8 If a measure µ defined on a ring Rµ is semiadditive then it
is σ-additive.

Proof Let An, A ∈ Rµ for all n and A = ∪∞
n=1An. For any N ∈ N we have

∪N
n=1An ⊂ A, µ is a measure and hence it is additive. Therefore

µ(∪N
n=1An) =

N
∑

n=1

µ(An) ≤ µ(A)

Letting N → ∞ we obtain

∞
∑

n=1

µ(An) ≤ µ(A)

On the other hand, by semiadditivity we have

∞
∑

n=1

µ(An) ≥ µ(A)

The theorem is proved.

Note that here we required the domain of definition of µ to be a ring since
otherwise it is not clear if µ(∪N

n=1An) is defined.

Exercise 1.5 Prove that measure m′ from exercise 1.4, defined on the col-
lection Rm′ of elementary sets is σ-additive.

Exercise 1.6 Prove that measure m from example 1.2 , defined on the col-
lection Sm of rectangles is semiadditive. Is it σ-additive?
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Theorem 1.9 If a measure m defined on a semi-ring Sm is σ-additive then
its extension µ to a minimal ring R(Sm) is σ-additive.

Proof Assume that A ∈ R(Sm) and Bn ∈ R(Sm) for n = 1, 2, ... are
such that A = ∪∞

n=1Bn and Bn are disjoint. Then there exist disjoint sets
Ai ∈ Sm, and disjoint sets Bnj ∈ Sm such that

A = ∪iAi and Bn = ∪jBnj,

where the unions are finite.
Let Cnji = Bnj ∩ Ai. Obviously Cnji are disjoint and

Ai = ∪n ∪j Cnji and Bnj = ∪iCnji.

By complete additivity of m on Sm we have

m(Ai) =
∑

n

∑

j

m(Cnji) and m(Bnj) =
∑

i

m(Cnji).

By definition of µ on R(Sm) we have

µ(A) =
∑

i

m(Ai) and µ(Bn) =
∑

j

m(Bnj)

Since sums in i and j are finite and the series in n converges, it is easy to
see from the above equalities that

µ(A) =
∑

i

∑

n

∑

j

m(Cnji) =
∑

n

∑

j

∑

i

m(Cnji) =
∑

n

µ(Bn).

Theorem is proved.

Definition 1.10 A nonempty collection of sets P is a σ-ring if

1. Empty set ∅ ∈ R;

2. If An ∈ P, n = 1, 2, ... then ∩∞
n=1An ∈ P, ∪∞

n=1An ∈ P;

3. If A,B ∈ P then A \ B ∈ P.

If the set X ∈ P then P is called an σ-algebra.

Lemma 1.4 The intersection P = ∩αPα of an arbitrary number of σ-rings
is a σ-ring
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Lemma 1.5 If S is an arbitrary nonempty collection of sets there exists
precisely one σ-ring P(S) containing S and contained in every σ-ring P

containing S. This σ-ring P(S) is called the minimal σ-ring over collection
S (or the σ-ring generated by S).

Definition 1.11 A measure µ is called finite if for every A ∈ Sµ µ(A) <
∞. A measure µ is called σ-finite if for every A ∈ Sµ there exists a sequence
of sets {An} ⊂ Sµ such that A ⊂ ∪nAn and µ(An) < ∞.

Theorem 1.12 Every σ-additive σ-finite measure m(A) whose domain of
definition Rm is a ring has unique extension µ(A) whose domain of defini-
tion P(Rm) is a minimal σ-ring generated by Rm and µ is σ-additive and
σ-finite.

Proof We prove this theorem for a finite measure defined on an algebra.
The existence follows from the the theorems in section 1.2 and uniqueness
is left as an exercise.

Remark Theorems 1.5, 1.9, 1.12 tell us that if we have a σ-additive σ-finite
measure m on a semi-ring Sm, there is unique extension µ of this measure
to the minimal σ-ring P(Sm) and moreover this extension µ is σ-additive
and σ-finite. Therefore one can always start defining the σ-additive σ-finite
measure directly on a σ-ring, not on a semi-ring. You can find this approach
in many textbooks.

Remark Theorem 1.12 tells you that one can extend measure m′ defined
on the ring Rm′ of elementary sets in R2 to the unique σ-additive measure µ
defined on a minimal σ-ring P(Rm′). It is easy to see that P(Rm′) coincides
with σ-algebra of all open sets in R2 (or Borel algebra).
Thus, starting from a measure m on rectangles one can construct unique
σ-additive measure µ on Borel algebra.

Theorem 1.13 If A1 ⊃ A2 ⊃ ... is a monotone decreasing sequence of sets
in σ-ring P, µ is a σ-additive measure on P, A = ∩nAn and µ(A1) < ∞
then

µ(A) = lim
n→∞

µ(An)

Proof It is enough to consider the case A = ∅ since the general case reduces
to this on replacing An by An\A. Now

A1 = (A1\A2) ∪ (A2\A3) ∪ ..., An = (An\An+1) ∪ (An+1\An+2) ∪ ...
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and by σ-additivity of µ we have

µ(A1) =
∞
∑

n=1

µ(An\An+1), µ(Ak) =
∞
∑

n=k

µ(An\An+1).

Since the µ(A1) < ∞ we have µ(Ak) → 0 as k → ∞. Theorem is proved.

Definition 1.14 Let µ be a σ-additive measure defined on Borel σ-algebra
of all open sets in Rn. The µ is called Borel measure.

Definition 1.15 A measure µ defined on a semi-ring Sµ is called complete
if A ∈ Sµ, B ⊂ A and µ(A) = 0 imply that B ∈ Sµ (and then µ(B) = 0).

Theorem 1.16 If µ is a σ-additive measure on a σ-ring P then the class
M of all sets A ⊂ X of the form

A = B ∪ N, (3)

where B ∈ P and N ⊂ E ∈ P such that µ(E) = 0, is a σ-ring and the set
function µ̄ defined by

µ̄(A) = µ(B),

for all A ∈ M and B ∈ P related like in (3) is a complete σ-additive measure
on M.
The measure µ̄ is called completion of µ.

Proof Let us show that M is a σ-ring.

1. Obviously ∅ ∈ M, since ∅ can be represented as ∅ = ∅ ∪ ∅.

2. If Ai ∈ M for i = 1, 2, ... then

Ai = Bi ∪ Ni,

where Bi ∈ P and Ni ⊂ Ei ∈ P such that µ(Ei) = 0. We want
to check if A = ∪iAi ∈ M: by definition A = ∪iBi ∪ ∪iNi. Since
P is a sigma-ring B = ∪iBi ∈ P, N = ∪iNi ⊂ ∪iEi ∈ P and
µ(∪iEi) ≤

∑

i µ(Ei) = 0. Therefore A ∈ M.

Now we want to check if A = ∩iAi ∈ M: by definition A = ∩iBi∪∩iNi.
Since P is a σ-ring B = ∩iBi ∈ P, N = ∩iNi ⊂ E1 ∈ P and µ(E1) =
0. Therefore A ∈ M.
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3. Let A1, A2 ∈ M then A1\A2 = (B1\A2)∪ (N1\A2) = ((B1\B2)\N2)∪
(N1\A2). Obviously B = (B1\B2) ∈ P and B\N2 = (B\E2) ∪ (E2 ∩
(B\N2)), since N2 ⊂ E2. We obtain

A1\A2 = (B\E2) ∪ ((E2 ∩ (B\N2)) ∪ (N1\A2)),

where B\E2 ∈ P and (E2 ∩ (B\N2)) ∪ (N1\A2) ⊂ E2 ∪ E1 with
µ(E1 ∪ E2) = 0. So A1\A2 ∈ M.

We showed that M is a σ-ring. It is easy to prove that if P is a σ-algebra
then M is a σ-algebra.

Now we have to check that the set function µ̄ is well defined, i.e. we
have to show that if A1 ∪N1 = A2 ∪N2 then µ̄(A1 ∪N1) = µ̄(A2 ∪N2). By
definition

µ̄(A1 ∪ N1) = µ(A1) and µ̄(A2 ∪ N2) = µ(A2),

so we have to prove that µ(A1) = µ(A2). Using the fact A1 ∪N1 = A2 ∪N2

we obtain

µ(A1) = µ(A1 ∪ E1) ≤ µ(A2 ∪ E1 ∪ E2) = µ(A2)

µ(A2) = µ(A2 ∪ E2) ≤ µ(A1 ∪ E1 ∪ E2) = µ(A1).

Therefore µ̄ is well defined.
Now we have to show that µ̄ is σ-additive measure.

1. It is obvious µ̄(∅) = 0.

2. It is obvious µ̄(A) ≥ 0 for any A ∈ M.

3. If Ai ∈ M for i = 1, 2, ..., Ai ∩ Aj = ∅ and A = ∪iAi then

µ̄(A) =
∑

i

µ̄(Ai).

To show this we notice that µ̄(A) = µ(∪iBi) and since Ai’s are disjoint
the same is true for Bi’s (recall that Ai = Bi∪Ni). Now by σ-additivity
of µ we obtain

µ̄(A) = µ(∪iBi) =
∑

i

µ(Bi) =
∑

i

µ̄(Ai).

Therefore µ̄ is a σ-additive measure. It is easy to check that it is complete:
if A ∈ M and B ⊂ A, and µ̄(A) = 0 then A ⊂ E, where E ∈ P and
µ(E) = 0. But then B = ∅ ∪ B, B ⊂ E hence B ∈ M. The theorem is
proved.
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Definition 1.17 The completion of translation invariant Borel measure in
Rn is called Lebesgue measure.

Remark For simplicity, we define Borel and Lebesgue measures in Rn.
These definitions may be transferred to some topological spaces.

1.2 The extension of a measure on a semi-algebra using outer

measure

Here we are going to introduce the second approach to the construction of
complete σ-additive measure. Let m be a σ-additive measure defined on a
semi-algebra Sm with a unit X.

Definition 1.18 For any set A ⊂ X we define the outer measure

µ∗(A) = inf
A⊂∪nBn

∑

n

m(Bn),

where infimum is taken over all coverings of A by countable collections of
sets Bn ∈ Sm.

Let m′ be an extension of m to an algebra R(Sm) (it exists by theorem 1.5).
Then we may give an equivalent definition of the outer measure µ∗.

Definition 1.19 For any set A ⊂ X we define the outer measure

µ∗(A) = inf
A⊂∪nBn

∑

n

m′(Bn),

where infimum is taken over all coverings of A by countable collections of
sets Bn ∈ R(Sm).

Let µ1 be an extension of m′ to a σ-algebra P(Sm) (it exists by theorem
1.12). Then we may give yet another equivalent definition of the outer
measure µ∗ (we are not going to use this one).

Definition 1.20 For any set A ⊂ X we define the outer measure

µ∗(A) = inf
A⊂B

µ1(B),

where infimum is taken over all coverings of A by sets B ∈ P(Sm).

It is easy to see that these three definitions are equivalent.
Let’s prove some properties of µ∗.
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Theorem 1.21 If A ⊂ ∪nAn for some countable collection of sets An then

µ∗(A) ≤
∑

n

µ∗(An)

Proof By definition of µ∗ for all n and any ε > 0 there exists a countable
collection of sets {Bk

n} ⊂ Sm such that An ⊂ ∪kB
k
n and

∑

k

m(Bk
n) ≤ µ∗(An) +

ε

2n
.

Then A ⊂ ∪n ∪k Bk
n and

µ∗(A) ≤
∑

n

∑

k

m(Bk
n) ≤

∑

n

µ∗(An) + ε.

Taking ε → 0 we get the result.

Lemma 1.6 For any A,B ⊂ X we have

|µ∗(A) − µ∗(B)| ≤ µ∗(A∆B).

Proof Since A ⊂ B ∪ (A∆B) and B ⊂ A ∪ (A∆B) we have

µ∗(A) ≤ µ∗(B) + µ∗(A∆B), µ∗(B) ≤ µ∗(A) + µ∗(A∆B).

This implies |µ∗(A) − µ∗(B)| ≤ µ∗(A∆B). The lemma is proved.

It seems that µ∗ is a very ”good” set function: we can measure any

subset of X with it. But the ”bad” thing about it is that µ∗ is not additive
(i.e. µ∗(A ∪ B) 6= µ∗(A) + µ∗(B) if A ∩ B = ∅) and hence it is not a
measure in the usual sense. To see this in one particular case when X = R

we construct Vitali set and use this construction to show non-additivity of
µ∗.

Example 1.3 (Vitali set) We define the following relation: for x, y ∈ R we
say x ∼ y if and only if x − y ∈ Q (Q is the set of rational numbers). It is
easy to check that

1. x ∼ x;

2. x ∼ y ⇒ y ∼ x;

3. x ∼ y and y ∼ z ⇒ x ∼ z;
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and hence ∼ is equivalence relation and R can be split into disjoint equiva-
lence classes. We define set E as a set containing exactly one representa-
tive from each equivalence class. Since e and e− [e] belong to the same class
we can always choose E ⊂ [0, 1]. This E is called Vitali’s set.

Theorem 1.22 The outer measure defined for any A ⊂ R as

µ∗(A) = inf
A⊂∪nIn

∑

i

L(In),

where In ⊂ R is an open, half-open or a closed interval and L(In) is the
usual length of the interval, is not additive.

Proof We define a countable set C = Q∩[−1, 1] (since C is countable we can
say that C = {cn}

∞
n=1), the collection of sets {An}

∞
n=1, where An = cn + E,

and A = ∪∞
n=1An.

Claim.

1. [0, 1] ⊂ A ⊂ [−1, 2];

2. An are disjoint sets.

Proof Take any x ∈ [0, 1] then there exist unique ex ∈ E and qx ∈ Q such
that x = ex + qx. (This is true by definition of the set E). But E ⊂ [0, 1]
hence qx ∈ [−1, 1] and therefore any [0, 1] 3 x ∈ qx + E for some qx ∈ C.
From this it follows [0, 1] ⊂ A. Obviously A ⊂ [−1, 2].

Let Ai = ci + E and Aj = cj + E and i 6= j (ci 6= cj). Let’s argue by
contradiction, assume Ai ∩Aj 6= ∅ then there exists x such that x ∈ ci + E
and x ∈ cj + E, or x = ci + y1 = cj + y2, where y1, y2 ∈ E. But then
y1−y2 = cj −ci ∈ Q and this means y1 ∼ y2. Since E contains exactly one

representative from each class it follows that y1 = y2 which implies ci = cj .
We got a contradiction, hence Ai ∩ Aj = ∅.

Since µ∗ is translation invariant (prove it!) we have µ∗(E) = µ∗(An) for
all n. Suppose µ∗ is additive then by semiadditivity and additivity of µ∗ we
have σ-additivity of µ∗. This means

µ∗(A) =

∞
∑

n=1

µ∗(An) =

{

∞ if µ(E) > 0,

0 if µ(E) = 0.

However [0, 1] ⊂ A ⊂ [−1, 2] and therefore 1 ≤ µ∗(A) ≤ 3. This is a
contradiction. Therefore µ∗ is not additive.
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The solution to this problem is to restrict µ∗ to a ”nice” collection of
subsets where it is additive (and therefore σ-additive). We call such subsets
measurable.

There are several equivalent definitions of a measurable set.

Definition 1.23 A subset A ⊂ X is called measurable if

for all E ⊂ X, µ∗(E) = µ∗(A ∩ E) + µ∗(Ac ∩ E) . (4)

Definition 1.24 A subset A ⊂ X is called measurable if

µ∗(A ∩ X) + µ∗(Ac ∩ X) = 1 . (5)

Definition 1.25 A set A ⊂ X is called measurable if for any ε > 0 there
exists a set B ∈ R(Sm) such that

µ∗(A∆B) < ε

Theorem 1.26 Definitions 1.23, 1.24, 1.25 are equivalent.

Proof Def 1.25 ⇒ Def 1.23. Let A be measurable according to the
definition 1.25. Take any ε > 0 then there exists a set B ∈ R(Sm) such that
µ∗(A∆B) < ε. Since

A∆B = Ac∆Bc

we have µ∗(Ac∆Bc) < ε, where Bc ∈ R(Sm). Using lemma 1.6, for any
E ⊂ X we obtain

|µ∗(E ∩ A) − µ∗(E ∩ B)| ≤ µ∗((E ∩ A)∆(E ∩ B)) ≤ µ∗(A∆B) < ε,

|µ∗(E ∩ Ac) − µ∗(E ∩ Bc)| ≤ µ∗((E ∩ Ac)∆(E ∩ Bc)) ≤ µ∗(Ac∆Bc) < ε.

From the above inequalities we have

µ∗(E ∩ A) + µ∗(E ∩ Ac) ≤ µ∗(E ∩ B) + µ∗(E ∩ Bc) + 2ε. (6)

However since B ∈ R(Sm) the following is true:

µ∗(E ∩ B) + µ∗(E ∩ Bc) = µ∗(E).

Let’s show this: by definition of µ∗ and since B ∈ R(Sm) we have

µ∗(E) = inf
E⊂∪kBk

∑

k

m′(Bk) = inf
E⊂∪kBk

∑

k

(m′(Bk ∩ B) + m′(Bk ∩ Bc)),
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where Bk ∈ R(Sm). We also have

µ∗(E ∩ B) ≤ inf
E⊂∪Bk

∑

k

m′(Bk ∩ B)

and
µ∗(E ∩ Bc) ≤ inf

E⊂∪Bk

∑

k

m′(Bk ∩ Bc).

Using the fact inf(a + b) ≥ inf a + inf b we obtain

µ∗(E) ≥ µ∗(E ∩ B) + µ∗(E ∩ Bc).

Applying semiadditivity of µ∗ we have

µ∗(E) = µ∗(E ∩ B) + µ∗(E ∩ Bc).

Now using (6) and taking ε → 0 we get

µ∗(E ∩ A) + µ∗(E ∩ Ac) ≤ µ∗(E).

Now the result follows from semiadditivity of µ∗.
Def 1.23 ⇒ Def 1.24. This one is obvious.
Def 1.24 ⇒ Def 1.25. Let A be measurable according to the definition
1.24, i.e.

µ∗(A) + µ∗(X\A) = 1.

For any ε > 0 there exist sets {Bn} ⊂ R(Sm) and {Cn} ⊂ R(Sm) such that

A ⊂ ∪nBn, X\A ⊂ ∪nCn

and
∑

n

m′(Bn) ≤ µ∗(A) + ε,
∑

n

m′(Cn) ≤ µ∗(X\A) + ε.

Since
∑

n m′(Bn) < ∞ (as µ∗(A) ≤ 1) there is N ∈ N such that

∞
∑

n=N+1

m′(Bn) < ε.

We define B = ∪N
n=1Bn ∈ R(Sm) and want to show that µ∗(A∆B) < 3ε. It

is easy to check that
A∆B ⊂ P ∪ Q,
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where P = ∪∞
n=N+1Bn and Q = ∪n(B ∩ Cn). Obviously

µ∗(P ) ≤
∞
∑

n=N+1

m′(Bn) < ε.

Let us estimate µ∗(Q). It is easy to see that (∪nBn)∪ (∪n(Cn\B)) = X and
hence

1 ≤
∑

n

m′(Bn) +
∑

n

m′(Cn\B).

By definition of Bn and Cn we have

∑

n

m′(Bn) +
∑

n

m′(Cn) ≤ µ∗(A) + µ∗(X\A) + 2ε = 1 + 2ε

and therefore

∑

n

m′(Cn ∩ B) =
∑

n

m′(Cn) −
∑

n

m′(Cn\B) < 2ε.

This implies µ∗(Q) < 2ε and µ∗(A∆B) ≤ µ∗(P ) + µ∗(Q) < 3ε. This proves
the result.

Remark Not all sets are measurable. Vitali set, which is used to construct
a sequence of subsets of R on which µ∗ is not σ-additive, is an example of a
nonmeasurable set.

Definition 1.27 The set function µ is defined on the collection of all mea-
surable sets M by

µ(A) = µ∗(A)

for all A ∈ M.

Note that we don’t know yet that µ is a measure.
Let us investigate the properties of measurable sets and µ.

Theorem 1.28 The collection M of all measurable sets is an algebra.

Proof Let A1 and A2 be measurable sets then for any ε > 0 there exist
B1, B2 ∈ R(Sm) such that

µ∗(A1∆B1) <
ε

2
, µ∗(A2∆B2) <

ε

2
.
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Using the relation

(A1 ∪ A2)∆(B1 ∪ B2) ⊂ (A1∆B1) ∪ (A2∆B2)

and the fact that B1 ∪ B2 ∈ R(Sm) we obtain

µ∗((A1 ∪ A2)∆(B1 ∪ B2)) ≤ µ∗(A1∆B1) + µ∗(A2∆B2) < ε,

therefore A1 ∪ A2 is measurable.
Using the relation

(A1\A2)∆(B1\B2) ⊂ (A1∆B1) ∪ (A2∆B2)

and the fact that B1\B2 ∈ R(Sm) we obtain A1\A2 is measurable. The
theorem is proved.

Theorem 1.29 The function µ(A) is σ-additive on the collection M of mea-
surable sets

Proof First we show additivity of µ on M. Let A1, A2 ∈ M and A1 ∩A2 =
∅. For any ε > 0 there exist B1, B2 ∈ R(Sm) such that

µ∗(A1∆B1) <
ε

2
, µ∗(A2∆B2) <

ε

2
.

Define A = A1 ∪ A2 ∈ M and B = B1 ∪ B2. It is easy to show that

B1 ∩ B2 ⊂ (A1∆B1) ∪ (A2∆B2)

and therefore m′(B1 ∩ B2) < ε. By lemma 1.6 we have

|m′(B1) − µ∗(A1)| <
ε

2
, |m′(B2) − µ∗(A2)| <

ε

2
.

Since m′ is additive on R(Sm) we obtain

m′(B) = m′(B1) + m′(B2) − m′(B1 ∩ B2) ≥ µ∗(A1) + µ∗(A2) − 2ε.

Noting that A∆B ⊂ (A1∆B1)∪ (A2∆B2) and using semiadditivity of µ∗ we
have

µ∗(A) ≥ m′(B) − µ∗(A∆B) ≥ m′(B) − ε ≥ µ∗(A1) + µ∗(A2) − 3ε.

Since ε > is arbitrary we have

µ∗(A) ≥ µ∗(A1) + µ∗(A2).
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Using semiadditivity of µ∗ and the fact that A1, A2, A ∈ M we obtain

µ(A) = µ(A1) + µ(A2).

and hence µ is additive.
Using theorem 1.8 and the fact that µ is semiadditive on M (since on M

it coincides with µ∗ and µ∗ is semiadditive) we obtain the result.

Now we know that µ is a σ-additive measure.

Theorem 1.30 The collection M of all measurable sets is a σ-algebra.

Proof Let Ai ∈ M for i = 1, 2, ... and A = ∪∞
i=1Ai. Define

A′
n = An\ ∪

n−1
i=1 Ai.

It is clear that A′
n are measurable (by theorem 1.28), disjoint and A =

∪∞
n=1A

′
n. By theorem 1.29 we have: for all N ∈ N

N
∑

n=1

µ(A′
n) = µ(∪N

n=1A
′
n) ≤ µ(A).

Therefore the series
∑∞

n=1 µ(A′
n) converges and for any ε > 0 there exists

M ∈ N such that
∑∞

n=M µ(A′
n) < ε

2 . The set C = ∪M
n=1A

′
n ∈ M and hence

there exist B ∈ R(Sm) such that µ∗(C∆B) < ε
2 . Since

A∆B ⊂ (C∆B) ∪ (∪∞
n=MA′

n)

we obtain
µ∗(A∆B) < ε

and hence A is measurable. Since M is an algebra the theorem is proved.

Theorem 1.31 Measure µ is complete.

Proof Let A ∈ M, B ⊂ A and µ(A) = 0, then µ∗(B∆∅) ≤ µ∗(A∆∅) =
µ(A) = 0. Since ∅ ∈ R(Sm) we obtain B ∈ M. The theorem is proved.

We showed that the extension µ of a measure m from a semi-algebra Sm to
the σ-algebra M ⊃ Sm of all measurable sets coinciding on M with the outer
measure µ∗ is complete σ-additive measure. It seems that we constructed
one complete measure µ̄ in section 1.1, theorem 1.16 and another measure
µ = µ∗ �M here. In fact these two measures coincide.
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Theorem 1.32 If m′ is a σ-additive σ-finite measure on a ring R and if
µ∗ is the outer measure induced by m′ then the completion of the extension
of m′ to the σ-algebra P(R) is identical with restriction of µ∗ to the class
of all µ∗ measurable sets.

Proof The proof of this theorem is left as an exercise.

Problems

1. Let A1, A2, . . . be an increasing sequence of subsets of X, i. e., Aj ⊂
Aj+1 ∀ j ∈ N. Suppose that Aj is µ-measurable for all j ∈ N and prove
that µ(

⋃∞
j=1 Aj) = limj→∞ µ(Aj).

2. Let A be a Lebesgue measurable subset of R. Prove that, for each ε > 0,
there exists an open subset Eε of R such that

A ⊂ Eε and µ(Eε \ A) < ε.

3. A subset of Rn is called a rectangle if it is a product of intervals, i.e. R ⊂ Rn

is a rectangle if there exist intervals I1, I2, . . . , In ⊂ R such that R =
I1 × I2 × . . . × In. Prove that every open subset of Rn can be written as
a countable union of open rectangles. Deduce that the open subsets and
closed subsets of R are all measurable.

4. i. Let A be a Lebesgue measurable subset of R. Prove that, given ε > 0,
there exists a closed subset Fε of R such that

Fε ⊂ A and µ(A \ Fε) < ε.

ii. Let B be a subset of R with the property that, for each ε > 0, there
exists an open subset Eε of R such that

B ⊂ Eε and µ∗(Eε \ B) < ε.

Prove that B is Lebesgue measurable.

5. Given a sequence of subsets E1, E2, . . . of a set X we define

lim supEj :=

∞
⋂

j=1

∞
⋃

k=j

Ek and lim inf Ej :=

∞
⋃

j=1

∞
⋂

k=j

Ek .
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Note that lim supEj is the set of points which belong to Ej for infinitely
many values of j. Suppose that Ej is µ-measurable for all j ∈ N and prove
that

µ(lim inf Ej) 6 lim inf µ(Ej) .

6. Let U be an open subset of R. For each x ∈ U , let

ax := inf{a ∈ R | (a, x) ⊂ U}, bx := sup{b ∈ R | (x, b) ⊂ U}, Ix := (ax, bx) .

Prove that x ∈ U ⇒ Ix ⊂ U and that, if x, y ∈ U and Ix ∩ Iy 6= ∅ then
Ix = Iy. Deduce that every open subset of R is a countable union of disjoint
open intervals.

7. Given λ ∈ R and A ⊂ R, let A+λ := {x + λ | x ∈ A}.

i. Prove that, for all A ⊂ R and for all λ ∈ R, µ∗(A+λ) = µ∗(A) (µ∗ is the
outer measure from the theorem 1.22).

ii. Prove that if A ⊂ R is Lebesgue measurable and λ ∈ R then A+λ is
Lebesgue measurable.
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2 Measurable functions

First we give some general definitions.

Definition 2.1 (X,M) is called a measurable space if X is some set, M is
a σ-algebra on X.

Definition 2.2 The triple (X,M, µ) is called a measure space if X is some
set, M is a σ-algebra of subsets of X and µ is a on M.

Definition 2.3 A function f : X → R is called µ-measurable (or just mea-
surable) if

f−1(A) ∈ M

for any Borel set A on R.

Our main interest in measurable functions lies in the theory of Lebesgue

integration. Therefore throughout the rest of the lecture notes X ⊂ Rn,
M is Borel algebra with all null sets and µ is Lebesgue measure, although
the theory remains true for general measure spaces.

Proposition 2.4 Function f : X → R is measurable if and only if for any
c ∈ R set

{x ∈ X : f(x) < c}

is measurable.

Proof Necessity is obvious since (−∞, c) is Borel set and hence measurable.
Sufficiency: It is not difficult to show that σ-algebra created by sets
(−∞, c), where c ∈ R, coincides with Borel σ-algebra on R. If {x ∈ X :
f(x) < c} is measurable for all c ∈ R then f−1(−∞, c) ∈ M (by definition of
inverse image). From this it follows that P(f−1(−∞, c)) ∈ M and therefore
f−1(P((−∞, c))) ∈ M.

Exercise 2.1 In the theorem we have used the fact that if A is a collection
of sets then P(f−1(A)) = f−1(P(A)). Prove it.

Proposition 2.5 Let f : X → R be some function. The following state-
ments are equivalent

1. {x ∈ X : f(x) < c} ∈ M for any c ∈ R;

2. {x ∈ X : f(x) ≥ c} ∈ M for any c ∈ R;
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3. {x ∈ X : f(x) > c} ∈ M for any c ∈ R;

4. {x ∈ X : f(x) ≤ c} ∈ M for any c ∈ R;

Proof Since M is a σ-algebra it is easy to see that statements 1 and 2 are
equivalent and statements 3 and 4 are equivalent. Using the facts that

{x ∈ X : f(x) ≥ c} = ∩∞
n=1{x ∈ X : f(x) > a −

1

n
}

and

{x ∈ X : f(x) < c} = ∪∞
n=1{x ∈ X : f(x) ≤ a −

1

n
}

We have the result.

Now to find out if the function is measurable we just have to check either
of points 1 − 4.

We also want to know what kind of operation we may do with measurable
functions that the resulting function is also measurable. For instance, we
want to know if sum, product, e.t.c of measurable functions is measurable.

Lemma 2.1 Let f : X → R be µ-measurable and φ : R → R be Borel
measurable. Then φ(f(x)) is µ-measurable.

Proof Let g(x) = φ(f(x)) and A ⊂ R be an arbitrary Borel set. Then
φ−1(A) is Borel set since φ is Borel measurable and g−1(A) = f−1(φ−1(A))
is µ-measurable. Lemma is proved.

Theorem 2.6 Let f : X → R and g : X → R be measurable functions.
Then f + g, f − g, fg, f

g
(if g(x) 6= 0), max(f, g) and min(f, g) are measu-

rable functions.

Proof It is obvious that if f is measurable function then so are cf and
f(x)+c for any c ∈ R. If f and g are measurable functions we show that set
{x ∈ X : f(x) > g(x)} is measurable. Indeed, take {rk}

∞
k=1 - the sequence

of all rational numbers (we can do it since rational numbers are countable).
Then

{x ∈ X : f(x) > g(x)} = ∪∞
k=1({x ∈ X : f(x) > rk} ∩ {x ∈ X : rk > g(x)}).

Therefore we have that set {x ∈ X : f(x) > −g(x) + c} is measurable.
Hence we obtain f + g is a measurable function.
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To show that fg is measurable we use the following identity

fg =
1

4
((f + g)2 − (f − g)2)

Using f + g, f − g are measurable functions and the fact that continuous
function of a measurable function is itself measurable we conclude the proof.

The rest of the proof is left as an exercise.

Theorem 2.7 Let {fn}
∞
n=1 be a sequence of measurable functions. Then

supn fn(x), infn fn(x), lim supn fn(x) and lim infn fn(x) are measurable fun-
ctions.

Proof Let g(x) = supn fn(x) then for any c ∈ R we have

{x ∈ X : g(x) > c} = ∪n{x ∈ X : fn(x) > c}

and hence g(x) is a measurable function.
Let g(x) = infn fn(x) then for any c ∈ R we have

{x ∈ X : g(x) < c} = ∪n{x ∈ X : fn(x) < c}

and hence g(x) is a measurable function.
By definition we have

lim sup
n

fn(x) = inf
k

sup
n≥k

fn(x)

and
lim inf

n
fn(x) = sup

k

inf
n≥k

fn(x)

hence result follows from previous arguments..

Exercise 2.2 From this theorem it is easy to deduce that if {fn}
∞
n=1 is a

sequence of measurable functions that converges pointwise to a function f(x)
then f(x) is a measurable function. Do it.

We did not use anything about completeness of our measure yet. Now
is the time.

Definition 2.8 Functions f : X → R and g : X → R are equivalent (f ∼ g)
if

µ({x ∈ X : g(x) 6= f(x)}) = 0.

Proposition 2.9 A function f : X → R equivalent to some measurable
function g : X → R is measurable itself.

Proof By definition of equivalence sets {x ∈ X : f(x) ≤ c} and {x ∈ X :
g(x) ≤ c} may differ just by some null set and hence if one is measurable
the other is measurable as well.
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2.1 Convergence of measurable functions

In this section we define some types of convergences of function sequences
on the space (X,µ).

Definition 2.10 A sequence of measurable functions {fn(x)}∞n=1, defined
on (X,µ) is called convergent almost everywhere to f(x) (fn(x) → f(x) a.e.
X) if

µ({x ∈ X : lim
n→∞

fn(x) 6= f(x)}) = 0

Definition 2.11 A sequence of measurable functions {fn(x)}∞n=1, defined
on (X,µ) is called convergent in measure to f(x) (fn(x) →µ f(x) a.e. X) if
for every δ > 0

lim
n→∞

µ({x ∈ X : |fn(x) − f(x)| ≥ δ}) = 0

Proposition 2.12 If a sequence of measurable functions {fn(x)}∞n=1 con-
verges almost everywhere to a function f(x) then f(x) is also a measurable
function

Proof The proof is left as an exercise.

Let us first prove the theorem that relates the notion of convergence a.e.
and uniform convergence.

Theorem 2.13 (Egoroff) Suppose that a sequence of measurable functions
{fn(x)}∞n=1 converges a.e to f(x) on X (µ(X) < ∞). Then for every δ > 0
there exists a measurable set Xδ ⊂ X such that

1. µ(Xδ) > µ(X) − δ;

2. the sequence fn(x) converges to f(x) uniformly on Xδ.

Proof Obviously f(x) is measurable. We define

Xm
n = ∩i≥n{x ∈ X : |fi(x) − f(x)| <

1

m
}

and Xm = ∪∞
n=1X

m
n . By definition of Xm

n we see that Xm
1 ⊂ Xm

2 ⊂ ... ⊂
Xm

n ⊂ .... By continuity of measure we have: for any m and any δ > 0 there
exists n0(m) such that

µ(Xm\Xm
n0(m)) <

δ

2m
.

We define Xδ = ∩∞
m=1X

m
n0(m). Let us show that Xδ is the required set.
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1. fn → f uniformly on Xδ since if x ∈ Xδ then x ∈ Xm
n0(m) for any

m and hence |fi(x) − f(x)| < 1
m

if i ≥ n0(m). This is exactly the
definition of uniform convergence.

2. Let us estimate µ(X\Xδ). We notice that µ(X\Xm) = 0 for any m.
Indeed, if x0 ∈ X\Xm then there exists a sequence i → ∞ such that
|fi(x0) − f(x0)| ≥

1
m

. This means that fi(x0) does not converge to
f(x0). Since fi(x) → f(x) a.e. X we have µ(X\Xm) = 0.

This implies µ(X\Xm
n0(m)) = µ(Xm\Xm

n0(m)) < δ
2m and we obtain

µ(X\Xδ) =µ(X\ ∩∞
m=1 Xm

n0(m))

=µ(∪∞
m=1(X\Xm

n0(m))) ≤
∞
∑

m=1

µ(X\Xm
n0(m)) ≤ δ.

The theorem is proved.

In the two theorems below we relate convergence a.e. and convergence in
measure.

Theorem 2.14 If the sequence of measurable functions fn(x) → f(x) a.e.
then fn(x) →µ f(x).

Proof It is easy to see that f(x) is measurable. Let A = {x ∈ X :
limn→∞ fn(x) 6= f(x)}, obviously µ(A) = 0. Fix δ > 0 and define Xk(δ) =
{x ∈ X : |fk(x) − f(x)| ≥ δ}, Rn(δ) = ∪k≥nXk(δ), and M = ∩∞

n=1Rn(δ).
Obviously R1(δ) ⊃ R2(δ) ⊃ .... By continuity of the measure we have
µ(Rn(δ)) → µ(M) as n → ∞.

Let us show that M ⊂ A. Take x0 /∈ A, for this point we have: for
any δ > 0 there exists N such that |fk(x0) − f(x0)| < δ for any k ≥ N .
Therefore x0 /∈ RN (δ) and hence x0 /∈ M . This implies µ(Rn(δ)) → 0 and
since Xn(δ) ⊂ Rn(δ) we obtain µ(Xn(δ)) → 0. The theorem is proved.

Theorem 2.15 If a sequence of measurable functions fn →µ f then there
exists a subsequence {fnk

} ⊂ {fn} that converges to f a.e. X.

Proof Let {εn} be a positive sequence such that εn → 0 and let {ηn} be
a positive sequence such that

∑∞
n=1 ηn < ∞. Let us build a sequence of

indices n1 < n2 < ... as follows:
choose n1 to be such that µ{x ∈ X : |fn1

(x) − f(x)| ≥ ε1} < η1;
choose n2 > n1 to be such that µ{x ∈ X : |fn1

(x) − f(x)| ≥ ε2} < η2 e.t.c.
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We show that fnk
(x) → f(x) a.e. X. Indeed, let Ri = ∪∞

k=i{x ∈ X :
|fnk

(x) − f(x)| ≥ εk}, M = ∩∞
i=1Ri. Obviously R1 ⊃ R2 ⊃ ..., using the

continuity of the measure we obtain µ(Ri) → µ(M), but µ(Ri) ≤
∑∞

k=i ηk

hence µ(Ri) → 0, since the series converges.
Now we have to check that fnk

(x) → f(x) in X\M . Let x0 ∈ X\M then
there exists i0 such that x0 /∈ Ri0 and hence for any k ≥ i0 x0 /∈ .{x ∈ X :
|fnk

(x) − f(x)| ≥ εk}. But this implies |fnk
(x) − f(x)| < εk for any k ≥ i0.

Since εk → 0 we get that fnk
(x0) → f(x0). The theorem is proved.

Theorem 2.16 (Lusin) A function f : [a, b] → R is measurable if and only
if for any ε > 0 there exists a continuous function φε such that

µ{x ∈ [a, b] : f(x) 6= φε(x)} < ε

Proof Let for any ε > 0 there exists φε - continuous function such that

µ{x ∈ [a, b] : f(x) 6= φε(x)} < ε

It is easy to see that if A = {x ∈ [a, b] : f(x) < c} and B = {x ∈ [a, b] :
φε(x) < c} then

A ⊂ B ∪ {x ∈ [a, b] : f(x) 6= φε(x)},

B ⊂ A ∪ {x ∈ [a, b] : f(x) 6= φε(x)}.

Therefore A∆B ⊂ {x ∈ [a, b] : f(x) 6= φε(x)} and µ∗(A∆B) < epsion.
On the other hand since φε is continuous then it is measurable and set B
is measurable. Therefore there exists Borel set C such that µ∗(B∆C) < ε
(actually equal to 0). From this it follows that µ∗(A∆C) < 2ε and hence A
is measurable.

The second part of the proof may be done using Egoroff theorem. It is
left as an exercise.
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3 Lebesgue integral

We are going to define Lebesgue integral for elementary functions first.

Definition 3.1 A function f : X → R is called elementary if it is measur-
able and takes not more than a countable number of values.

Proposition 3.2 A function f : X → R taking not more than a countable
number of values y1, y2, ... is measurable if and only if all sets An = {x ∈
X : f(x) = yn} are measurable.

Proof The necessity follows from the fact that An = f−1(yn) and {yn} are
Borel sets. The sufficiency is clear since for any A ∈ P(R) we have f−1(A) =
∪yn∈AAn, where the union is at most countable. Hence f−1(A) ∈ M.

Proposition 3.3 A function f : X → R is measurable if and only if it is a
limit of a uniformly convergent sequence of elementary functions.

Proof Let {fn(x)} be a sequence of elementary functions and fn → f uni-
formly on X. Then obviously fn(x) → f(x) a.e. and hence f(x) is mea-
surable by theorem 2.12. Now let f(x) be a measurable function. We set
fn(x) = m

n
on An

m = {x ∈ X : m
n

≤ f(x) < m+1
n

} (m ∈ Z and n ∈ N).
Obviously fn(x) is elementary and |fn(x)−f(x)| ≤ 1

n
on X. Taking n → ∞

we get the result.

Let us define Lebesgue integral for elementary functions. Take f : X → R

be elementary function with values

y1, y2, ..., yn, ... (yi 6= yj for i 6= j).

Let A ⊂ X be a measurable set. We define
∫

A

f(x)dµ =
∑

n

ynµ(An), (7)

where An = {x ∈ A : f(x) = yn}.

Definition 3.4 An elementary function f : X → R is integrable on A if the
series (7) is absolutely convergent. In this case (7) is called an integral of
f over A.
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Lemma 3.1 Let A = ∪kBk, Bi ∩Bj = ∅ for i 6= j and on any Bk function
f : A → R takes only one value ck. Then

∫

A

f(x)dµ =
∑

k

ckµ(Bk) (8)

and f is integrable on A if and only if the series in (8) converges absolutely.

Proof Obviously f(x) is elementary and then we can find at most countable
number of distinct values y1, y2, ..., yn, ... of f(x). We have An = {x ∈ A :
f(x) = yn} = ∪ck=ynBk and therefore

∑

n

ynµ(An) =
∑

n

yn

∑

ck=yn

µ(Bk) =
∑

k

ckµ(Bk)

Now we have to show that these two series converge or diverge simultane-
ously and this is true since

∑

n

|yn|µ(An) =
∑

n

|yn|
∑

ck=yn

µ(Bk) =
∑

k

|ck|µ(Bk).

The lemma is proved.

It is easy to see that integral of elementary function is linear functional.
Now we want to extend the definition of Lebesgue integral to measurable
functions that are not necessarily elementary.

3.1 Integrable functions

Definition 3.5 A function f : X → R is integrable on a measurable set
A ⊂ X if there exists a sequence {fn(x)} of elementary integrable functions
on A such that fn → f uniformly on A. The limit

I = lim
n→∞

∫

A

fn(x)dµ (9)

is denoted by
∫

A

f(x)dµ

and is called the integral of f over A.

This definition makes sense if the following conditions hold:
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1. The limit (9) exists for any uniformly convergent sequence of elemen-
tary integrable functions.

2. For a fixed f(x) this limit is independent of the choice of the sequence
{fn(x)}.

3. If f(x) is an elementary function then this definition of integrability
coincides with the definition 3.4

Let us show that all these points are satisfied. Notice that if {fn} is a
sequence of elementary integrable functions then

∣

∣

∣

∣

∫

A

fn(x)dµ −

∫

A

fm(x)dµ

∣

∣

∣

∣

≤ µ(A) sup
x∈A

|fn(x) − fm(x)|. (10)

This inequality implies that if {fn} converges uniformly to f then
∫

A
fn(x)dµ

is a Cauchy sequence and hence limn→∞

∫

A
fn(x)dµ exists. Point 1 is proved.

To show point 2 we assume that there are two sequences {fn} and {gn}
of elementary integrable functions uniformly converging to f . Obviously
we have supx∈A |fn(x) − gn(x)| → 0 as n → ∞. Formula (10) implies
∣

∣

∫

A
fn(x)dµ −

∫

A
gn(x)dµ

∣

∣→ 0 that proves point2.
To show point 3 take fn(x) = f(x) for all n, where f is elementary and

integrable and then use point 2.

Properties of the integral

Let f and g be any integrable functions on A then:

1.
∫

A
1dµ = µ(A);

2. for any c ∈ R
∫

cf(x)dµ = c
∫

A
f(x)dµ;

3.
∫

A
(f(x) + g(x))dµ =

∫

A
f(x)dµ +

∫

A
g(x)dµ;

4. if f(x) ≥ 0 then
∫

A
f(x)dµ ≥ 0;

5. if µ(A) = 0 then
∫

A
f(x)dµ = 0;

6. if f(x) = g(x) a.e. then
∫

A
f(x)dµ =

∫

A
g(x)dµ;

7. any bounded measurable function is integrable;

8. if h(x) is measurable function on A and |h(x)| ≤ |f(x)| for some inte-
grable f then h(x) is integrable;
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9. for any measurable function h(x) integrals
∫

A
h(x)dµ and

∫

A
|h(x)|dµ

exist or don’t exist simultaneously.

These properties are usually proved for the integrals of elementary func-
tions and then, passing to the limit, for integrable functions. We prove here
only property 8..

Proposition 3.6 If a function f(x) is integrable and measurable function
|h(x)| ≤ f(x) then h(x) is also integrable.

Proof Let f(x) and h(x) be elementary functions. Then A can be written
as a union of countable number of disjoint sets An on each of which f(x)
and h(x) are constants:

h(x) = an, f(x) = bn and |an| ≤ bn.

Obviously
∑

n

|an|µ(An) ≤
∑

n

bnµ(An) =

∫

A

f(x)dµ.

This implies h(x) is integrable and
∣

∣

∣

∣

∫

A

h(x)dµ

∣

∣

∣

∣

≤

∫

A

f(x)dµ.

Now let f(x) be an integrable function and |h(x)| ≤ f(x). We may
approximate h(x) and f(x) by sequences of uniformly convergent elementary
functions {hn(x)} and {fn(x)}, respectively. Since f(x) is integrable then
fn(x) can be chosen as elementary integrable functions. This implies that
for any ε > 0 there exists N ∈ N such that if n > N then

|hn(x) − h(x)| < ε and |fn(x) − f(x)| < ε.

Obviously for n > N |hn(x)| ≤ |fn(x)|+2ε and then as before hn(x) are inte-
grable. Hence h(x) is a limit of uniformly convergent sequence of elementary
integrable functions and therefore is integrable. Proposition is proved.

Proposition 3.7 Let A = ∪nAn, where An are measurable sets and Ai ∩
Aj = ∅ for i 6= j, and let f : A → R be an integrable function then

∫

A

f(x)dµ =
∑

n

∫

An

f(x)dµ

and existence of left integral implies existence of integrals in the right and
absolute convergence of the series.
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Proof We check the theorem for integrable elementary functions first and
then pass to the limit to get the proof for any integrable function. Let f(x)
be an elementary integrable function taking values y1, y2, .... Let Bk = {x ∈
A : f(x) = yk} and Bn

k = {x ∈ An : f(x) = yk} then

∫

A

f(x)dµ =
∑

k

ykµ(Bk) =
∑

k

yk

∑

n

µ(Bn
k )

=
∑

n

∑

k

ykµ(Bn
k ) =

∑

n

∫

An

f(x)dµ.

We can change summation indices since f is an integrable elementary func-
tion.

Now let f be any integrable function, by definition 3.5 for every ε > 0 we
may find an elementary integrable function gε such that |gε(x) − f(x)| < ε
on A. For gε we have

∫

A

gε(x)dµ =
∑

n

∫

An

gε(x)dµ.

Since gε is integrable over each An we have that f is integrable over each
An and

∑

n

∣

∣

∣

∣

∫

An

f(x)dµ −

∫

An

g(x)dµ

∣

∣

∣

∣

≤
∑

n

εµ(An) = εµ(A),

∣

∣

∣

∣

∫

A

f(x)dµ −

∫

A

g(x)dµ

∣

∣

∣

∣

≤ εµ(A).

Therefore the series
∑

n

∫

An
f(x)dµ converges absolutely and

∣

∣

∣

∣

∣

∑

n

∫

An

f(x)dµ −

∫

A

f(x)dµ

∣

∣

∣

∣

∣

≤ 2εµ(A).

Letting ε → 0 we get the result.

Proposition 3.8 Let A = ∪nAn, where An are measurable sets and Ai ∩
Aj = ∅ for i 6= j. Let f : A → R be a measurable function and

∫

An
f(x)dµ

exist for all n and the series
∑

n

∫

An
|f(x)|dµ converges. Then

∫

A

f(x)dµ =
∑

n

∫

An

f(x)dµ.
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Proof We check the theorem for elementary functions first and then pass
to the limit to get the proof for any integrable function. Let f(x) be an
elementary function taking values y1, y2, .... Let Bk = {x ∈ A : f(x) = yk}
and Bn

k = {x ∈ An : f(x) = yk} then

∫

An

|f(x)|dµ =
∑

k

|yk|µ(Bn
k ).

Therefore

∑

n

∫

An

|f(x)|dµ =
∑

n

∑

k

|yk|µ(Bn
k ) =

∑

k

|yk|µ(Bk).

Hence f is integrable over A and
∫

A
f(x)dµ =

∑

k ykµ(Bk).
Now let f be any measurable function, by proposition 3.3 for every ε > 0

we may find an elementary function gε such that |gε(x) − f(x)| < ε on A.
For gε we have

∫

An

|gε(x)|dµ ≤

∫

An

f(x)dµ + εµ(An).

Therefore
∑

n

∫

An
|gε(x)|dµ converges and gε(x) is integrable. But then f(x)

is integrable too and by previous proposition we have the result.

Theorem 3.9 (Chebyshev inequality) Let f(x) ≥ 0 be integrable function
on A and c > 0 be some positive constant. Then

µ({x ∈ A : f(x) ≥ c}) ≤
1

c

∫

A

f(x)dµ.

Proof Take B = {x ∈ A : φ(x) ≥ c} then

∫

A

φ(x)dµ =

∫

B

φ(x)dµ +

∫

A\B
φ(x)dµ ≥

∫

B

φ(x)dµ ≥ cµ(B).

The theorem is proved.

Corollary 3.10 If
∫

A
|f(x)|dµ = 0 then f(x) = 0 a.e. on A.

Proof By Chebyshev inequality we have

µ({x ∈ A : f(x) ≥
1

n
}) ≤ n

∫

A

f(x)dµ for any n.
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This implies

µ({x ∈ A : f(x) 6= 0}) ≤
∞
∑

n=1

µ({x ∈ A : f(x) ≥
1

n
}) = 0.

The corollary is proved.

Theorem 3.11 (Absolute continuity of the integral) Let f(x) be an inte-
grable function on A. Then for any ε > 0 there exists δ > 0 such that

∣

∣

∣

∣

∫

E

f(x)dµ

∣

∣

∣

∣

< ε

for all measurable E ⊂ A such that µ(E) < δ.

Proof Fix ε > 0. The theorem is obvious if f is a bounded function. Let
f be an arbitrary integrable function on A. We define An = {x ∈ A : n ≤
|f(x)| < n+1}, Bn = ∪n

k=0An and Cn = A\Bn. By proposition 3.7 we have

∫

A

|f(x)|dµ =

∞
∑

n=0

∫

An

|f(x)|dµ.

Choose N such that

∫

CN

|f(x)|dµ =

∞
∑

n=N+1

∫

An

|f(x)|dµ <
ε

2
.

We can always do it since the series
∑∞

n=0

∫

An
|f(x)|dµ converges. Now let

0 < δ < ε
2(N+1) and µ(E) < δ then since |f(x)| < N + 1 on BN

∣

∣

∣

∣

∫

E

f(x)dµ

∣

∣

∣

∣

≤

∫

E

|f(x)|dµ =

∫

E∩BN

|f(x)|dµ +

∫

E∩CN

|f(x)|dµ ≤ ε.

Theorem is proved.

Using the properties of the integral proved in this section we may show
that for any integrable function f(s) ≥ 0 a set function defined on a mea-
surable subsets A ⊂ X

F (A) =

∫

A

f(x)dµ

is a σ-additive measure.
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3.2 Passage to the limit under the Lebesgue integral

Theorem 3.12 (Lebesgue Dominated Convergence) Let {fn(x)} be a se-
quence of integrable functions defined on A, fn(x) → f(x) a.e. x ∈ A, and
for any n |fn(x)| ≤ φ(x), where φ(x) is some integrable function on A. Then
f is integrable and

∫

A

fn(x)dµ →

∫

A

f(x)dµ

Proof Since |fn(x)| ≤ φ(x) and fn(x) → f(x) a.e. we have |f(x)| ≤ φ(x)
a.e. and therefore f(x) is an integrable function. Fix any ε > 0, by theorem
3.11 we may find δ > 0 such that

∫

B
φ(x)dµ < ε

2 if B ⊂ A and µ(B) < δ.
For this particular δ, using Egoroff’s theorem 2.13, we may find Eδ ⊂ A
such that µ(Eδ) < δ and fn → f uniformly on A\Eδ . Now we have

lim
n→∞

∣

∣

∣

∣

∫

A

fn(x)dµ −

∫

A

f(x)dµ

∣

∣

∣

∣

≤ lim
n→∞

∫

A\Eδ

|fn(x) − f(x)|dµ

+2

∫

Eδ

φ(x)dµ < ε

Since ε was arbitrary we take ε → 0 and obtain the result.

Theorem 3.13 (Monotone Convergence) Let f1(x) ≤ f2(x) ≤ ... be a se-
quence of integrable functions on A and

∫

A

fn(x)dµ ≤ C for all n,

where C is some constant independent of n. Then fn(x) converges a.e. on
A to some integrable function f(x) and

∫

A

fn(x)dµ →

∫

A

f(x)dµ

Proof Without loss of generality we may assume f1(x) ≥ 0. We want
to prove that fn(x) → f(x) a.e. Since fn(x) is a monotone increasing
sequence it is obvious that for every x ∈ A fn(x) → f(x) but here the
value of f(x) may be infinite. So our first task is to show that f(x) is
infinite only on some null set. We define R = {x ∈ A : limn→∞ fn(x) = ∞,
Rk

n = {x ∈ A : fn(x) > k}. It is easy to see that Rk
1 ⊂ Rk

2 ⊂ ... and
R = ∩∞

k=1 ∪
∞
n=1 Rk

n. Using Chebyshev inequality we obtain

µ(Rk
n) ≤

1

k

∫

A

fn(x)dµ ≤
C

k
for any n.
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Now we have R ⊂ ∪∞
n=1R

k
n for any k and therefore

µ(R) ≤ µ(∪∞
n=1R

k
n) = lim

n→∞
µ(Rk

n) ≤
C

k

for any k ∈ N. Taking k → ∞ we obtain µ(R) = 0. This proves that
monotone sequence {fn(x)} has a finite limit f(x) a.e. on A.

Now we want to show integrability of f(x). If we show this then using
Lebesgue dominated convergence theorem 3.12 we get the result since 0 ≤
fn(x) ≤ f(x) and fn(x) → f(x) a.e. To show integrability of f we construct
an auxiliary function φ(x):

φ(x) = k on Ak ≡ {x ∈ A : k − 1 ≤ f(x) < k}.

It is obvious that φ(x) is elementary and f(x) ≤ φ(x) ≤ f(x) + 1. By def-
inition

∫

A
φ(x)dµ exists if and only if

∑∞
k=1 kµ(Ak) converges. We define

Bm = ∪m
k=1Ak, obviously

∑m
k=1 kµ(Ak) =

∫

Bm
φ(x)dµ ≤

∫

Bm
f(x)dµ+µ(A).

Since 0 ≤ f(x) ≤ m on Bm by theorem 3.12 we have
∫

Bm
f(x)dµ =

limn→∞

∫

Bm
fn(x)dµ ≤ C.Therefore

m
∑

k=1

kµ(Ak) ≤ C + µ(A)

and taking m → ∞ we see that this series converges and φ(x) is integrable.
Since 0 ≤ f(x) ≤ φ(x) the theorem is proved.

Theorem 3.14 (Fatou lemma) If a sequence of non-negative integrable fun-
ctions {fn(x)} converges a.e. on A to a function f(x) and

∫

A

fn(x)dµ ≤ C for all n,

where C is some constant independent of n. Then f(x) is integrable on A
and

lim inf

∫

A

fn(x)dµ ≥

∫

A

f(x)dµ

Proof We prove this result using Monotone convergence theorem 3.13. We
define φn(x) = infk≥n fk(x), it is easy to see that

1. φn(x) is measurable for all n;

2. 0 ≤ φn(x) ≤ fn(x) and hence φn(x) is integrable for all n with
∫

A
φn(x)dµ ≤

∫

A
f(x)dµ ≤ C;
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3. 0 ≤ φ1(x) ≤ φ2(x) ≤ ... and φn(x) → f(x) a.e.

Using Monotone convergence theorem 3.13 we have limn→∞

∫

A
φn(x)dµ =

∫

A
f(x)dµ and hence

lim inf

∫

A

fn(x)dµ ≥ lim inf

∫

A

φn(x)dµ =

∫

A

f(x)dµ.

The theorem is proved.

3.3 Product measures and Fubini theorem

Definition 3.15 The set of ordered pairs (x1, ..., xn), where xi ∈ Xi for
i = 1, .., n is called a product of sets X1, ..., Xn is denoted by X ≡ X1×X2×
... × Xn ≡ ×n

k=1Xk.

In particular, if X1 = X2 = ... = Xn then X ≡ Xn

Definition 3.16 If S1, ...,Sn are collection of subsets of sets X1, ..., Xn,
respectively, then

S ≡ S1 × ... × Sn ≡ ×n
k=1Sk

is the collection of subsets of X = ×n
k=1Xk representable in the form A =

A1 × ... × An, where Ak ∈ Sk.

Theorem 3.17 If S1, ...,Sn are semi-rings then S = ×n
k=1Sk is a semi-

ring.

Proof The proof of this theorem is left as an exercise.

Definition 3.18 Let µ1, ..., µn be some measures defined on the semi-rings
S1, ...,Sn. Then the set function

µ = µ1 × ... × µn

on a semi-ring S = S1 × ... × Sn is defined as

µ(A) = µ1(A1)µ2(A2) · · · µn(An)

for S 3 A = A1 × ... × An

Proposition 3.19 The set function µ from definition 3.18 is a measure.

Proof The proof of this proposition is left as an exercise.
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Theorem 3.20 If the measures µ1, ..., µn are σ-additive then the measure
µ = ×n

k=1µk is σ-additive.

Proof The proof of this theorem is left as an exercise.

For simplicity of the presentation we consider the case n = 2 only. We
assume that X and Y are some sets, µx and µy are Lebesgue measures on
these sets. We also introduce µ = µx ⊗ µy which is Lebesgue extension of a
measure m = µx × µy on X × Y .

Definition 3.21 Let A ⊂ Z = X × Y then

Ax = {y ∈ Y : (x, y) ∈ A}, Ay = {x ∈ X : (x, y) ∈ A}.

Theorem 3.22 Under the above assumptions on X, Y , µx, µy and µ we
have

µ(A) =

∫

Y

µx(Ay)dµy =

∫

X

µy(Ax)dµx

Proof We are going to prove only first equality

µ(A) =

∫

Y

φA(y)dµy,

where φA(y) = µx(Ay), since the second one can be done by the same
arguments. By definition of µ it is Lebesgue extension of m = µx × µy

defined on the collection of sets Sm of the form A = Ay0
× Ax0

, where Ay0

is µx-measurable and Ay0
is µy-measurable. For such sets A we obviously

have

µ(A) = µx(Ay0
)µy(Ax0

) =

∫

Ax0

µx(Ay0
)dµy =

∫

Y

φA(y)dµy,

where

φA(y) =

{

µx(Ay0
) if y ∈ Ax0

,

0 otherwise .

Note that if you make a section of such A at any point y ∈ Y , you obtain
either ∅ if y /∈ Ax0

or Ay0
if y ∈ Ax0

. This means the theorem is true
for such ”rectangles” A. The generalization of the result to a finite disjoint
union of such sets is not difficult. Since those sets coincide with R(Sm) we
have the theorem for this algebra.
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Lemma 3.2 If A is µ-measurable set, then there exists a set B such that

B = ∩nBn, B1 ⊃ B2 ⊃ ...,

Bn = ∪kBnk, Bn1 ⊂ Bn2 ⊂ ...,

where the sets Bnk ∈ R(Sm), A ⊂ B and

µ(A) = µ(B).

The proof of this lemma is left as an exercise.
Since we can prove the theorem for any set in R(Sm) and using the above
lemma approximate any measurable A by the special set B ∈ P(Sm). We
first prove the theorem for this B:

φBn(y) = lim
k→∞

φBnk
(y), as φBn1

(y) ≤ φBn2
(y) ≤ ...

φB(y) = lim
k→∞

φBk
(y), as φB1

(y) ≤ φB2
(y) ≤ ...

Since we know that
∫

Y
φBnk

(y)dµy = µ(Bnk), by continuity of µ we obtain
µ(Bnk) → µ(Bn). On the other hand we have

φBn(y) = lim
k→∞

φBnk
(y) and

∫

Y

φBnk
(y)dµy ≤ µ(Bn)

Using monotone convergence theorem we have
∫

Y

φBnk
(y)dµy →

∫

Y

φBn(y)dµy = µ(Bn).

By the same arguments
∫

Y
φBn(y)dµy →

∫

Y
φB(y)dµy = µ(B). This proves

the theorem for this special set B.
Now we prove the theorem for any null set. If µ(A) = 0 then by lemma

µ(B) = 0 and therefore
∫

Y

φB(y)dµy = µ(B) = 0.

But since φB(y) ≥ 0 a.e this implies µx(By) = φB(y) = 0 a.e. Since Ay ⊂ By

we have Ay is measurable for almost all y ∈ Y and

φA(y) = µx(Ay) = 0,

∫

Y

φA(y)dµy = 0 = µ(A).

The theorem holds for null sets. Since by the above lemma any measurable
set A = B\N we have the result.
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Theorem 3.23 The Lebesgue integral of a nonnegative integrable function
f(x) is equal to the measure µ = µx ⊗ µy of the set

A =

{

x ∈ M,

0 ≤ y ≤ f(x).

Proof The proof is left as an exercise.

Theorem 3.24 (Fubini) Suppose that σ-additive and complete measures µx

and µy are defined on Borel algebras with units X and Y , respectively; fur-
ther suppose that

µ = µx ⊗ µy,

and that the function f(x, y) is µ-integrable on A ⊂ X × Y . Then

∫

A

f(x, y)dµ =

∫

X

(
∫

Ax

f(x, y)dµy

)

dµx =

∫

Y

(

∫

Ay

f(x, y)dµx

)

dµy.

Proof We prove the theorem first for the case f(x, y) ≥ 0. Let us consider
the triple product

U = X × Y × R,

and the product measure

λ = µx ⊗ µy ⊗ µ1 = µ ⊗ µ1,

where µ1 is 1 − D Lebesgue measure. We define a set W ⊂ U as follows:

W = {(x, y, z) ∈ U : x ∈ Ax, y ∈ Ay, 0 ≤ z ≤ f(x, y)}.

By theorem 3.23

λ(W ) =

∫

A

f(x, y)dµ,

on the other hand by theorem 3.22

λ(W ) =

∫

X

ν(Wx)dµx,

where ν = µy ⊗ µ1 and Wx = {(y, z) : (x, y, z) ∈ W}. But by theorem 3.23

ν(Wx) =

∫

Ax

f(x, y)dµy.
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Therefore we obtain
∫

A

f(x, y)dµ =

∫

X

(
∫

Ax

f(x, y)dµy

)

dµx.

The theorem is proved for f(x, y) ≥ 0. The general case reduces to this one
by f(x, y) = f+(x, y) − f−(x, y).

Problems

1. If f(x) is a measurable function, g(x) is an integrable function and
α, β ∈ R are such that α ≤ f(x) ≤ β a.e., then there exists γ ∈ R such
that α ≤ γ ≤ β and

∫

X

f(x)|g(x)|dµ = γ

∫

X

|g(x)|dµ.

2. If {fn(x)} is a sequence of integrable functions such that

∑

n

∫

X

|fn(x)|dµ < ∞,

then the series
∑

n fn(x) → f(x) a.e., where f is integrable and

∑

n

∫

X

|fn(x)|dµ =

∫

X

f(x)dµ.

3. Suppose µ = µx ⊗ µy is a product measure on X×Y . Show that if f is
µ-measurable and

∫

X
(
∫

Ax
|f(x, y)|dµy)dµx exists then f is µ-integrable

on X × Y and Fubini’s theorem holds.

4. Let f ∈ L1(X), g ∈ L1(Y ) and h(x, y) = f(x)g(y) a.e. (x, y) ∈ Ω =
X × Y . Prove that h ∈ L1(Ω) and

∫

Ω
h(x, y)dµ =

∫

X

f(x)dµx

∫

Y

g(y)dµy.

5. Construct Lebesgue integral using simple functions.

6. Show that a space of integrable functions is complete with respect to
metric

d(f, g) =

∫

X

|f(x) − g(x)|dµ.

.
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7. Compare Lebesgue and Riemann integral. What is the main difference
in the construction and properties of these integrals?

8. Let X = Y = [0, 1] and µ = µx ⊗ µy, where µx = µy is Lebesgue
measure. Let f(x), g(x) be integrable over X. If

F (x) =

∫

[0,x]
f(x)dµx, G(x) =

∫

[0,x]
g(x)dµx

for x ∈ [0, 1], then

∫

X

F (x)g(x)dµx = G(1)F (1) −

∫

X

f(x)G(x)dµx.
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