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1 Introduction

Unimodal maps on the unit interval are among the most studied dynamical
systems. Perhaps the two most frequently mentioned are the logistic map and
the tent map. These two share many properties with each other, and can in
fact be conjugated at certain parameter values via a homeomorphism

k(x) := 2π arcsin(
√
x). (1)

(I.e with logistic map f and tent map g, f = k−1 ◦ g ◦ k.) [Rauch, ]. Fur-
thermore, both of these maps can be topologically conjugated to the shift map
on two symbols, which can be easily seen to have many interesting properties
[Bhaumik and Choudhury, 2009], most of which are preserved by conjugacy.
Many results are known concerning unimodal maps in general. Results had
been proved in [Metropolis et al., 1973] concerning the so-called U-sequence
of a map, that is, the order in which orbits of different periods become sta-
ble. It is shown to be ‘universal’ for a large family of maps. It is also shown
in [Hussein and Abed, 2012] that all unimodal maps with negative Schwarzian
derivative

(Sf)(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

, (2)

are chaotic (in many definitions on the word). The use of symbolic dynamics in
analysis of maps on the unit interval can be seen in [Milnor and Thurston, 1988],
where various results are proved using the lap number, which is defined to be
the smallest number s such that f can be broken in to s monotone segments on
the interval. We consider a similar quantity in Section 3 as a way of computing
topological entropy.

In this project we look at the sine map given by

xn+1 = fµ(xn) (3)

fµ(x) = µsin(πx) x ∈ [0, 1], µ > 0. (4)

We can see in Figure 1.1 that it has some superficial similarities to the logistic
map, but how do the dynamics compare? Computing the Schwarzian derivative
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yields

(Sf)(x) = −π2(1 + 3
2 tan2(πx)) < 0, (5)

so we expect chaotic behaviour. We focus on the analysis of fixed points, period
points, local bifurcations and chaos.

2 Fixed and Periodic Points

We first consider the existence of fixed and periodic points of the sin map. There
is one obvious fixed point at x = 0, and from the plot we can see there should
be another which we call x[µ]. We can find this numerically for given values of
µ, for example we have that

x[1] ≈ 0.7365 (6)

x[2] ≈ 0.8587 (7)

x[100] ≈ 0.9968. (8)

Interestingly however we can see that for small µ, we have only one fixed point.
This is when x > µsin(πx) for all x or equivalently when d

dx (µ sin(πx)) < 1,
which gives µ < 1

π . We can verify this graphically to see how the fixed point
x[µ] behaves as µ increases, see Figure 1.2.

At x = 0, xn+1 = fµ(xn) ≈ µπxn, hence the fixed point at x = 0 is stable
in the regime µ < 1

π , marginal for µ = 1
π , and unstable otherwise. Expanding

sin(πx) as a Taylor series about x = 0, setting x =
√
6
π δ, and µ = 1

π (1 + ν) we
obtain

δn+1 ≈ (1 + ν)(δn − δ3n), (9)

which is the normal form for the supercritical pitchfork bifurcation. Indeed, we
could have inferred this from Figure 1.2. This is different from the transcritical
bifurcation at x = 0 on the logistic map covered in lectures as the sine map
has symmetry that gives rise to an extra stable fixed point for negative x. The
stability condition for the second fixed point is given by |πµ cos(πx[µ])| < 1,
and thus there is an area of stability which we can find numerically. We know
analytically that it is stable for 1

π < µ < c for some constant c which can be
found as c ≈ 0.7200. We can verify numerically that f ′0.72(x[0.72]) = −1, so
we have a period doubling bifurcation at this point. This suggests we obtain a
stable period two orbit that will then undergo period doubling itself. We can
compute numerically the point (µ, x) at which the n-fold iterate map fnµ (x) is a
fixed point, and simultaneously [fnµ ]′(x) = −1. These are listed in Table 1 and
can be seen on the bifurcation diagram (see Figures 2.1,2.2).

We can use the values from Table 1 to give an estimate of the Feigenbaum
constant, δ = 4.669 . . . [Briggs, 1991]. If µm is the location of the mth bifurca-
tion point we have that

δ = lim
m→∞

δm − δm−1
δm+1 − δm

. (10)
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Figure 1.1: The sin map on the unit interval
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Figure 1.2: A plot of x[µ] against µ.
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Figure 2.1: The bifurcation diagram for µ ∈ [0, 1].

Figure 2.2: A close up of the chaotic region. Note the stable period 3 window
around µ ≈ 0.94.
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n µ x
1 0.7200 0.6458
2 0.8333 0.8208
4 0.8586 0.8566
8 0.8641 0.8638
16 0.8653 0.8517

Table 1: The bifurcation points and respective locations of stable fixed points
for the map fnµ .

Substituting in our values for m = 3 gives us

δ ≈ 0.8641− 0.8586

0.8653− 0.8641
≈ 4.6605. (11)

The period doubling bifurcation explains the orbits of even period, but not
the period 3 orbit. We solve the equations x = f3µ(x) and |[f3µ]′(x)| = 1 to find
that the period three orbit is only stable for µ ∈ [0.9378, 0.9425]. The stable
period three orbit also has a matching unstable orbit which we can see in Figure
2.3.

The appearance and behaviour of the bifurcation diagram is very similar to
that of the logistic map, albeit with different parameter values. There is a good
reason for this. The following result was given by [Metropolis et al., 1973].

Theorem 2.1. [Metropolis et al., 1973] Consider the map x 7→ µf(x) and sup-
pose the following four properties hold:

A.1: f(x) is continuous, single-valued, and piecewise C1 on [0, 1], and
strictly positive on the open interval, with f(0) = f(1) = 0.

A.2: f(x) has a unique maximum, fmax ≤ 1, assumed either at a point or
in an interval. To the left or right of this point (or interval), f(x) is strictly
increasing or strictly decreasing respectively.

A.3: At any x such that f(x) = fmax, the derivative exists and is equal to
zero.

B: Let µmax = 1/fmax. Then there exists a µ0 such that for µ0 < µ < µmax,
µf(x) has only two fixed points, the origin and x[µ], say, both of which are
repellent.

Then , the order in which periodic orbits become stable (the U-
sequence) is completely determined.

Note that these are sufficient conditions, but not necessary. It is trivial to
check that the sine map satisfies these properties. So in fact the bifurcation
diagram has precisely the same structure as that of the logistic map. The first
few terms of this U-sequence up to period 7 are 2, 4, 6, 7, 5, 7, 3, 6 . . .
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Figure 2.3: The point at which the period three orbits are generated, the stable
one labelled.
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3 Chaos and Entropy

We have seen from the bifurcation diagram (Fig. 2.1) that the sine map be-
comes chaotic as r approaches 1. We can quantify this chaos by computing the
Lyapunov exponents for the sine map given by the formula

λ = lim
n→∞

1

n

n−1∑
i=0

ln |µπ cos(πxi)|. (12)

We plot the Lyapunov exponents against the parameter µ in Figure 3.5. Again,
this image is very close to the equivalent plot for the logistic map given in
[Hall and Wolff, 1995]. The areas in which the graph strays above the dotted
line at zero are precisely those in which the map becomes chaotic. It is shown
in [Misiurewicz, 1980] that the topological entropy of a piecewise monotone
mapping, f , of an interval can be expressed as

htop(f) = lim
n→∞

1

n
ln en, (13)

where en is the number of critical points of the map fn on the interval. A general
method for computing the number of critical points is given in [Dilão and Amigó, 2010],
but we can prove a result for the sine map directly.

Proposition 3.1. Let µ = 1, then the n-fold composition of the sine map fn1 (x)
has 2n − 1 critical points on the unit interval.

Let En = {x ∈ [0, 1] | [fn1 ]′(x) = 0}. We seek to prove that en = ‖En‖ =
2n − 1.

Proof. The result is clear when n = 1. Assume it is true for n = k, then

[fk+1
1 ]′(x) = 0 =⇒ [fk1 ]′(f(x))f ′(x) = 0 (14)

=⇒ x ∈ { 12} ∪ f
−1
1 (Ek). (15)

Since µ = 1, every y ∈ [0, 1) has precisely two preimages x1 6= x2 6= 1
2 . Further-

more

[fk1 ]′(1) 6= 0, (16)

so 1 /∈ Ek. Hence ‖Ek+1‖ = 2 × ‖Ek‖ + 1 = 2k+1 − 1. The result follows by
induction.

Hence, the topological entropy of the sine map when µ = 1 is given by

htop(f1) = lim
n→∞

1

n
ln(2n − 1) = ln 2. (17)

Again, this is the same as the maximal topological entropy for the logistic map
[Froyland et al., 2001]. It seems then, that in all ways it has been examined,
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Figure 3.4: The Lyapunov exponents for the sine map.
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Figure 3.5: A close up of the chaotic region.
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the sine map is qualitatively identical to the logistic map, and the superficial
similarity has resulted in a much deeper connection. It would be natural to
consider splitting the interval at the critical point x = 1

2 , and considering the
symbolic dynamics that result. A good summary of symbolic dynamics for
unimodal maps, and the properties that can be determined, can be found in
[Hao, 1991].
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