Corrections on

"Multiscale and multilevel technique for consistent segmentation of nonstationary time series" [1]

Haeran Cho * Piotr Fryzlewicz †

January 28, 2015

We correct Lemma 2 in the supplementary document of [1] as below.

Lemma 2' Suppose (1.2) holds and let $\eta \equiv \eta_{p_0+r} \in [s,e]$ for some $r \in \{1,\ldots,q\}$, denote a true change-point. Then there exists $c_0 \in (0,\infty)$ such that for b satisfying $|\widetilde{\mathbb{S}}_{s,e}^b| < |\widetilde{\mathbb{S}}_{s,e}^o|$ and $|\eta-b| \geq c_0 \epsilon_T$ with $\epsilon_T = T^{5/2-2\Theta} \log T$, we have $|\widetilde{\mathbb{S}}_{s,e}^{\eta}| - |\widetilde{\mathbb{S}}_{s,e}^{b}| \geq 2 \log T$.

Proof. Let both $\widetilde{\mathbb{S}}_{s,e}^{\eta}$, $\widetilde{\mathbb{S}}_{s,e}^{b} \geq 0$ without loss of generality.

The proof follows directly from the proof of Lemma 2.6 in [2]. We only consider Case 2 of Lemma 2.6, since adapting the proof of Case 1 (when there is a single change-point within [s, e]) to that of the current lemma takes analogous arguments.

Using the notations therein, it is shown that the term E_{1l} is dominant over E_{2l} and E_{3l} in $\widetilde{\mathbb{S}}_{s,e}^{\eta} - \widetilde{\mathbb{S}}_{s,e}^{b}$, where $l = c_0 \epsilon_T$. Noting further that $i = \eta - s + 1$, $h = \delta_T$, $j = e - \eta - h$ and $a = \sum_{t=s}^{\eta} \sigma^2(t/T) - (e - s + 1)^{-1} \sum_{t=s}^{e} \sigma^2(t/T)$, and that $h \geq 2l$,

$$E_{1l} = \frac{la\sqrt{i+j+h}}{\sqrt{i}\sqrt{j+h}} \cdot \frac{h-l}{\sqrt{i+l}\sqrt{j+h-l}} \left\{ \frac{h-l}{\sqrt{(i+l)(j+h-l)} + \sqrt{i(j+l)}} \right\}$$

$$\geq \widetilde{\mathbb{S}}_{s.e}^{\eta} \cdot C\epsilon_{T}\delta_{T}T^{-2} \geq 2\log T$$

for large T.

With Lemma 2', we derive Theorem 1' under Assumption 2', which correct Theorem 1 and Assumption 2 of [1], respectively. Theorem 2 of [1] is also updated with regards to the rate given to the bias term ϵ_T in Theorem 1' below.

Assumption 2' For $\Theta \in (7/8, 1]$ and $\theta \in (5/4 - \Theta, \Theta - 1/2)$, the length of each segment in $\sigma^2(t/T)$ is bounded from below by $\delta_T = CT^{\Theta}$. Further, there exists some constant $c \in (0, \infty)$ such that,

$$\max_{1\leq p\leq N}\left\{\sqrt{\frac{\eta_p-\eta_{p-1}}{\eta_{p+1}-\eta_p}},\sqrt{\frac{\eta_{p+1}-\eta_p}{\eta_p-\eta_{p-1}}}\right\}\leq c.$$

^{*}School of Mathematics, University of Bristol, UK. haeran.cho@bristol.ac.uk

[†]Department of Statistics, London School of Econimics, UK.

Theorem 1' Suppose that $\{Y_{t,T}\}_{t=0}^{T-1}$ follows the model (3). Assume that there exist M, m > 0 such that $\sup_t |\sigma^2(t/T)| \leq M$ and $\inf_{1 \leq i \leq N} |\sigma^2((\eta_i + 1)/T) - \sigma^2(\eta_i/T)| \geq m$. Under Assumption 2', the number and locations of the detected breakpoints are consistent. That is, $\mathbb{P}\left\{\widehat{N} = N; |\widehat{\eta}_p - \eta_p| \leq C\epsilon_T, 1 \leq p \leq N\right\} \to 1$ as $T \to \infty$, where $\widehat{\eta}_p$, $p = 1, \ldots, \widehat{N}$ are detected breakpoints and $\epsilon_T = T^{5/2 - 2\Theta} \log T$. (Interpreting this in the rescaled time interval $[0, 1], \epsilon_T/T = T^{3/2 - 2\Theta} \log T \to 0$ as $T \to 0$.)

References

- [1] Cho, H. and Fryzlewicz, P. (2012), "Multiscale and multilevel technique for consistent segmentation of nonstationary time series," *Statistica Sinica*, 22, 207–229.
- [2] Venkatraman, E. S. (1992), "Consistency results in multiple change-point problems," *Technical Report No. 24, Department of Statistics, Stanford University.*