extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC12).1C2 = Dic3:C4 | φ: C2/C1 → C2 ⊆ Aut C2xC12 | 48 | | (C2xC12).1C2 | 48,12 |
(C2xC12).2C2 = C4:Dic3 | φ: C2/C1 → C2 ⊆ Aut C2xC12 | 48 | | (C2xC12).2C2 | 48,13 |
(C2xC12).3C2 = C2xDic6 | φ: C2/C1 → C2 ⊆ Aut C2xC12 | 48 | | (C2xC12).3C2 | 48,34 |
(C2xC12).4C2 = C4.Dic3 | φ: C2/C1 → C2 ⊆ Aut C2xC12 | 24 | 2 | (C2xC12).4C2 | 48,10 |
(C2xC12).5C2 = C2xC3:C8 | φ: C2/C1 → C2 ⊆ Aut C2xC12 | 48 | | (C2xC12).5C2 | 48,9 |
(C2xC12).6C2 = C4xDic3 | φ: C2/C1 → C2 ⊆ Aut C2xC12 | 48 | | (C2xC12).6C2 | 48,11 |
(C2xC12).7C2 = C3xC4:C4 | φ: C2/C1 → C2 ⊆ Aut C2xC12 | 48 | | (C2xC12).7C2 | 48,22 |
(C2xC12).8C2 = C3xM4(2) | φ: C2/C1 → C2 ⊆ Aut C2xC12 | 24 | 2 | (C2xC12).8C2 | 48,24 |
(C2xC12).9C2 = C6xQ8 | φ: C2/C1 → C2 ⊆ Aut C2xC12 | 48 | | (C2xC12).9C2 | 48,46 |