Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C2

Direct product G=NxQ with N=C2xDic3 and Q=C2
dρLabelID
C22xDic348C2^2xDic348,42

Semidirect products G=N:Q with N=C2xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xDic3):1C2 = D6:C4φ: C2/C1C2 ⊆ Out C2xDic324(C2xDic3):1C248,14
(C2xDic3):2C2 = C6.D4φ: C2/C1C2 ⊆ Out C2xDic324(C2xDic3):2C248,19
(C2xDic3):3C2 = D4:2S3φ: C2/C1C2 ⊆ Out C2xDic3244-(C2xDic3):3C248,39
(C2xDic3):4C2 = C2xC3:D4φ: C2/C1C2 ⊆ Out C2xDic324(C2xDic3):4C248,43
(C2xDic3):5C2 = S3xC2xC4φ: trivial image24(C2xDic3):5C248,35

Non-split extensions G=N.Q with N=C2xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xDic3).1C2 = Dic3:C4φ: C2/C1C2 ⊆ Out C2xDic348(C2xDic3).1C248,12
(C2xDic3).2C2 = C4:Dic3φ: C2/C1C2 ⊆ Out C2xDic348(C2xDic3).2C248,13
(C2xDic3).3C2 = C2xDic6φ: C2/C1C2 ⊆ Out C2xDic348(C2xDic3).3C248,34
(C2xDic3).4C2 = C4xDic3φ: trivial image48(C2xDic3).4C248,11

׿
x
:
Z
F
o
wr
Q
<