d | ρ | Label | ID | ||
---|---|---|---|---|---|
C22xC4:Q8 | 128 | C2^2xC4:Q8 | 128,2173 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC4:Q8):1C2 = C42.130D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 32 | (C2xC4:Q8):1C2 | 128,737 | |
(C2xC4:Q8):2C2 = (C2xC4):3SD16 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):2C2 | 128,745 | |
(C2xC4:Q8):3C2 = (C2xD4):Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):3C2 | 128,755 | |
(C2xC4:Q8):4C2 = C23.329C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):4C2 | 128,1161 | |
(C2xC4:Q8):5C2 = C24.264C23 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):5C2 | 128,1164 | |
(C2xC4:Q8):6C2 = C23.334C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):6C2 | 128,1166 | |
(C2xC4:Q8):7C2 = C24.267C23 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):7C2 | 128,1171 | |
(C2xC4:Q8):8C2 = C24.568C23 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):8C2 | 128,1172 | |
(C2xC4:Q8):9C2 = C23.352C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):9C2 | 128,1184 | |
(C2xC4:Q8):10C2 = C23.391C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):10C2 | 128,1223 | |
(C2xC4:Q8):11C2 = C23.392C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):11C2 | 128,1224 | |
(C2xC4:Q8):12C2 = C42.167D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):12C2 | 128,1274 | |
(C2xC4:Q8):13C2 = C42.168D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):13C2 | 128,1277 | |
(C2xC4:Q8):14C2 = C42.170D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):14C2 | 128,1279 | |
(C2xC4:Q8):15C2 = C42.173D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):15C2 | 128,1295 | |
(C2xC4:Q8):16C2 = C42.186D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):16C2 | 128,1353 | |
(C2xC4:Q8):17C2 = C42.187D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):17C2 | 128,1360 | |
(C2xC4:Q8):18C2 = C42.193D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):18C2 | 128,1372 | |
(C2xC4:Q8):19C2 = C42.196D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):19C2 | 128,1390 | |
(C2xC4:Q8):20C2 = C23.574C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):20C2 | 128,1406 | |
(C2xC4:Q8):21C2 = C24.385C23 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):21C2 | 128,1409 | |
(C2xC4:Q8):22C2 = C23.616C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):22C2 | 128,1448 | |
(C2xC4:Q8):23C2 = C24.421C23 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):23C2 | 128,1461 | |
(C2xC4:Q8):24C2 = C23.631C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):24C2 | 128,1463 | |
(C2xC4:Q8):25C2 = C42.200D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):25C2 | 128,1553 | |
(C2xC4:Q8):26C2 = C42.440D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):26C2 | 128,1589 | |
(C2xC4:Q8):27C2 = C43:12C2 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):27C2 | 128,1590 | |
(C2xC4:Q8):28C2 = C2xD4.10D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 32 | (C2xC4:Q8):28C2 | 128,1749 | |
(C2xC4:Q8):29C2 = C2xD4.D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):29C2 | 128,1762 | |
(C2xC4:Q8):30C2 = C42.445D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):30C2 | 128,1771 | |
(C2xC4:Q8):31C2 = C2xD4:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):31C2 | 128,1802 | |
(C2xC4:Q8):32C2 = C2xD4:2Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):32C2 | 128,1803 | |
(C2xC4:Q8):33C2 = C42.448D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):33C2 | 128,1811 | |
(C2xC4:Q8):34C2 = C2xC4.4D8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):34C2 | 128,1860 | |
(C2xC4:Q8):35C2 = C2xC42.28C22 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):35C2 | 128,1864 | |
(C2xC4:Q8):36C2 = C42.243D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):36C2 | 128,1873 | |
(C2xC4:Q8):37C2 = C2xC8:5D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):37C2 | 128,1875 | |
(C2xC4:Q8):38C2 = C2xC8.2D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):38C2 | 128,1881 | |
(C2xC4:Q8):39C2 = M4(2):8D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):39C2 | 128,1884 | |
(C2xC4:Q8):40C2 = C42.264D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):40C2 | 128,1938 | |
(C2xC4:Q8):41C2 = C42.276D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):41C2 | 128,1950 | |
(C2xC4:Q8):42C2 = C42.278D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):42C2 | 128,1958 | |
(C2xC4:Q8):43C2 = C42.279D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):43C2 | 128,1959 | |
(C2xC4:Q8):44C2 = C42.290D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):44C2 | 128,1970 | |
(C2xC4:Q8):45C2 = C42.291D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):45C2 | 128,1971 | |
(C2xC4:Q8):46C2 = C2xC23.38C23 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):46C2 | 128,2179 | |
(C2xC4:Q8):47C2 = C2xC22.35C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):47C2 | 128,2185 | |
(C2xC4:Q8):48C2 = C2xC22.36C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):48C2 | 128,2186 | |
(C2xC4:Q8):49C2 = C2xC23.41C23 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):49C2 | 128,2189 | |
(C2xC4:Q8):50C2 = C2xD4:6D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):50C2 | 128,2196 | |
(C2xC4:Q8):51C2 = C2xD4xQ8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):51C2 | 128,2198 | |
(C2xC4:Q8):52C2 = C2xD4:3Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):52C2 | 128,2204 | |
(C2xC4:Q8):53C2 = C2xC22.49C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):53C2 | 128,2205 | |
(C2xC4:Q8):54C2 = C2xC22.50C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):54C2 | 128,2206 | |
(C2xC4:Q8):55C2 = C22.88C25 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):55C2 | 128,2231 | |
(C2xC4:Q8):56C2 = C22.92C25 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):56C2 | 128,2235 | |
(C2xC4:Q8):57C2 = C22.98C25 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):57C2 | 128,2241 | |
(C2xC4:Q8):58C2 = C22.100C25 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):58C2 | 128,2243 | |
(C2xC4:Q8):59C2 = C2xC22.57C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):59C2 | 128,2260 | |
(C2xC4:Q8):60C2 = C22.133C25 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):60C2 | 128,2276 | |
(C2xC4:Q8):61C2 = C22.141C25 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8):61C2 | 128,2284 | |
(C2xC4:Q8):62C2 = C2xC22.26C24 | φ: trivial image | 64 | (C2xC4:Q8):62C2 | 128,2174 | |
(C2xC4:Q8):63C2 = C2xC23.37C23 | φ: trivial image | 64 | (C2xC4:Q8):63C2 | 128,2175 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC4:Q8).1C2 = C2xC4.10D8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).1C2 | 128,271 | |
(C2xC4:Q8).2C2 = C2xC4.6Q16 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).2C2 | 128,273 | |
(C2xC4:Q8).3C2 = C42.414D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).3C2 | 128,278 | |
(C2xC4:Q8).4C2 = C42.415D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).4C2 | 128,280 | |
(C2xC4:Q8).5C2 = C42.416D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).5C2 | 128,281 | |
(C2xC4:Q8).6C2 = C42.83D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).6C2 | 128,288 | |
(C2xC4:Q8).7C2 = C42.85D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).7C2 | 128,290 | |
(C2xC4:Q8).8C2 = C4:Q8:15C4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 32 | (C2xC4:Q8).8C2 | 128,618 | |
(C2xC4:Q8).9C2 = C42.431D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).9C2 | 128,688 | |
(C2xC4:Q8).10C2 = C42.111D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).10C2 | 128,692 | |
(C2xC4:Q8).11C2 = C42.114D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).11C2 | 128,698 | |
(C2xC4:Q8).12C2 = C42.117D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).12C2 | 128,713 | |
(C2xC4:Q8).13C2 = C42.121D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).13C2 | 128,719 | |
(C2xC4:Q8).14C2 = C42.122D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).14C2 | 128,720 | |
(C2xC4:Q8).15C2 = C42.436D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).15C2 | 128,722 | |
(C2xC4:Q8).16C2 = C42.125D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).16C2 | 128,725 | |
(C2xC4:Q8).17C2 = M4(2):8Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).17C2 | 128,729 | |
(C2xC4:Q8).18C2 = (C2xC4):2Q16 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).18C2 | 128,748 | |
(C2xC4:Q8).19C2 = (C2xQ8):Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).19C2 | 128,756 | |
(C2xC4:Q8).20C2 = C4:C4.95D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).20C2 | 128,775 | |
(C2xC4:Q8).21C2 = C4:C4:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).21C2 | 128,789 | |
(C2xC4:Q8).22C2 = (C2xC8):Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).22C2 | 128,790 | |
(C2xC4:Q8).23C2 = C2xC42.3C4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 32 | (C2xC4:Q8).23C2 | 128,863 | |
(C2xC4:Q8).24C2 = C42.161D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).24C2 | 128,1059 | |
(C2xC4:Q8).25C2 = C42:4Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).25C2 | 128,1063 | |
(C2xC4:Q8).26C2 = C23.247C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).26C2 | 128,1097 | |
(C2xC4:Q8).27C2 = C23.251C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).27C2 | 128,1101 | |
(C2xC4:Q8).28C2 = C23.263C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).28C2 | 128,1113 | |
(C2xC4:Q8).29C2 = C23.346C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).29C2 | 128,1178 | |
(C2xC4:Q8).30C2 = C23.351C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).30C2 | 128,1183 | |
(C2xC4:Q8).31C2 = C42.169D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).31C2 | 128,1278 | |
(C2xC4:Q8).32C2 = C42:6Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).32C2 | 128,1282 | |
(C2xC4:Q8).33C2 = C42:7Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).33C2 | 128,1283 | |
(C2xC4:Q8).34C2 = C42.176D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).34C2 | 128,1299 | |
(C2xC4:Q8).35C2 = C42.177D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).35C2 | 128,1300 | |
(C2xC4:Q8).36C2 = C42.195D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).36C2 | 128,1374 | |
(C2xC4:Q8).37C2 = C42:10Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).37C2 | 128,1392 | |
(C2xC4:Q8).38C2 = C23.613C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).38C2 | 128,1445 | |
(C2xC4:Q8).39C2 = C23.634C24 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).39C2 | 128,1466 | |
(C2xC4:Q8).40C2 = C42:18Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).40C2 | 128,1594 | |
(C2xC4:Q8).41C2 = C42:19Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).41C2 | 128,1600 | |
(C2xC4:Q8).42C2 = C2xC4:2Q16 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).42C2 | 128,1765 | |
(C2xC4:Q8).43C2 = C2xQ8:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).43C2 | 128,1805 | |
(C2xC4:Q8).44C2 = C2xC4.Q16 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).44C2 | 128,1806 | |
(C2xC4:Q8).45C2 = C2xC4.SD16 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).45C2 | 128,1861 | |
(C2xC4:Q8).46C2 = C2xC42.30C22 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).46C2 | 128,1866 | |
(C2xC4:Q8).47C2 = C42.241D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).47C2 | 128,1871 | |
(C2xC4:Q8).48C2 = C2xC4:Q16 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).48C2 | 128,1877 | |
(C2xC4:Q8).49C2 = C2xC8:3Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).49C2 | 128,1889 | |
(C2xC4:Q8).50C2 = C2xC8:2Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).50C2 | 128,1891 | |
(C2xC4:Q8).51C2 = C2xC8:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).51C2 | 128,1893 | |
(C2xC4:Q8).52C2 = M4(2):5Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).52C2 | 128,1897 | |
(C2xC4:Q8).53C2 = C42.267D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).53C2 | 128,1941 | |
(C2xC4:Q8).54C2 = C42.281D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).54C2 | 128,1961 | |
(C2xC4:Q8).55C2 = C42.282D4 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 64 | (C2xC4:Q8).55C2 | 128,1962 | |
(C2xC4:Q8).56C2 = C2xQ8:3Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).56C2 | 128,2208 | |
(C2xC4:Q8).57C2 = C2xQ82 | φ: C2/C1 → C2 ⊆ Out C2xC4:Q8 | 128 | (C2xC4:Q8).57C2 | 128,2209 | |
(C2xC4:Q8).58C2 = C4xC4:Q8 | φ: trivial image | 128 | (C2xC4:Q8).58C2 | 128,1039 |