extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4xC8).1C2 = C2.C82 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).1C2 | 128,5 |
(C2xC4xC8).2C2 = C42.385D4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).2C2 | 128,9 |
(C2xC4xC8).3C2 = M4(2):C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).3C2 | 128,10 |
(C2xC4xC8).4C2 = C42.46Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).4C2 | 128,11 |
(C2xC4xC8).5C2 = C22.7M5(2) | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).5C2 | 128,106 |
(C2xC4xC8).6C2 = C2xC8:C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).6C2 | 128,180 |
(C2xC4xC8).7C2 = C8xM4(2) | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).7C2 | 128,181 |
(C2xC4xC8).8C2 = C23.27C42 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).8C2 | 128,184 |
(C2xC4xC8).9C2 = C2xQ8:C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).9C2 | 128,207 |
(C2xC4xC8).10C2 = C42.316D4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).10C2 | 128,225 |
(C2xC4xC8).11C2 = C42:4C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).11C2 | 128,476 |
(C2xC4xC8).12C2 = (C4xC8):12C4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).12C2 | 128,478 |
(C2xC4xC8).13C2 = C4xQ8:C4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).13C2 | 128,493 |
(C2xC4xC8).14C2 = C4xC4:C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).14C2 | 128,498 |
(C2xC4xC8).15C2 = C42.45Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).15C2 | 128,500 |
(C2xC4xC8).16C2 = C8xC4:C4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).16C2 | 128,501 |
(C2xC4xC8).17C2 = C42.55Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).17C2 | 128,566 |
(C2xC4xC8).18C2 = C42.56Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).18C2 | 128,567 |
(C2xC4xC8).19C2 = C42.322D4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).19C2 | 128,569 |
(C2xC4xC8).20C2 = C4:C4:3C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).20C2 | 128,648 |
(C2xC4xC8).21C2 = C2.(C8:8D4) | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).21C2 | 128,665 |
(C2xC4xC8).22C2 = C42.61Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).22C2 | 128,671 |
(C2xC4xC8).23C2 = C42.431D4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).23C2 | 128,688 |
(C2xC4xC8).24C2 = C42.327D4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).24C2 | 128,716 |
(C2xC4xC8).25C2 = C42.436D4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).25C2 | 128,722 |
(C2xC4xC8).26C2 = C42.437D4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).26C2 | 128,723 |
(C2xC4xC8).27C2 = C2xC4:C16 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).27C2 | 128,881 |
(C2xC4xC8).28C2 = C42.13C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).28C2 | 128,894 |
(C2xC4xC8).29C2 = Q8xC2xC8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).29C2 | 128,1690 |
(C2xC4xC8).30C2 = C2xC4.SD16 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).30C2 | 128,1861 |
(C2xC4xC8).31C2 = C2xC8:1C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).31C2 | 128,295 |
(C2xC4xC8).32C2 = C8:7M4(2) | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).32C2 | 128,299 |
(C2xC4xC8).33C2 = C4xC2.D8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).33C2 | 128,507 |
(C2xC4xC8).34C2 = C42.59Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).34C2 | 128,577 |
(C2xC4xC8).35C2 = C8:5(C4:C4) | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).35C2 | 128,674 |
(C2xC4xC8).36C2 = (C2xC4):6Q16 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).36C2 | 128,701 |
(C2xC4xC8).37C2 = C2xC4xQ16 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).37C2 | 128,1670 |
(C2xC4xC8).38C2 = C2xC4:Q16 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).38C2 | 128,1877 |
(C2xC4xC8).39C2 = C2xC8:2Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).39C2 | 128,1891 |
(C2xC4xC8).40C2 = C42.367D4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).40C2 | 128,1902 |
(C2xC4xC8).41C2 = C42.42Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).41C2 | 128,296 |
(C2xC4xC8).42C2 = C42.43Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).42C2 | 128,300 |
(C2xC4xC8).43C2 = C4xC8.C4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).43C2 | 128,509 |
(C2xC4xC8).44C2 = C42.60Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).44C2 | 128,578 |
(C2xC4xC8).45C2 = C42.324D4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).45C2 | 128,580 |
(C2xC4xC8).46C2 = C42.62Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 32 | | (C2xC4xC8).46C2 | 128,677 |
(C2xC4xC8).47C2 = C2xC8.5Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).47C2 | 128,1890 |
(C2xC4xC8).48C2 = C42.364D4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).48C2 | 128,1892 |
(C2xC4xC8).49C2 = C8.14C42 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 32 | | (C2xC4xC8).49C2 | 128,504 |
(C2xC4xC8).50C2 = C2xC8.C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 32 | | (C2xC4xC8).50C2 | 128,884 |
(C2xC4xC8).51C2 = C2xC8:2C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).51C2 | 128,294 |
(C2xC4xC8).52C2 = C8:8M4(2) | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).52C2 | 128,298 |
(C2xC4xC8).53C2 = C4xC4.Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).53C2 | 128,506 |
(C2xC4xC8).54C2 = C42.58Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).54C2 | 128,576 |
(C2xC4xC8).55C2 = C8:7(C4:C4) | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).55C2 | 128,673 |
(C2xC4xC8).56C2 = C2xC8:3Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).56C2 | 128,1889 |
(C2xC4xC8).57C2 = C42.7C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 32 | | (C2xC4xC8).57C2 | 128,108 |
(C2xC4xC8).58C2 = C82:C2 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).58C2 | 128,182 |
(C2xC4xC8).59C2 = C8:9M4(2) | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).59C2 | 128,183 |
(C2xC4xC8).60C2 = C4xC8:C4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).60C2 | 128,457 |
(C2xC4xC8).61C2 = C2.C43 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).61C2 | 128,458 |
(C2xC4xC8).62C2 = C4:C8:13C4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).62C2 | 128,502 |
(C2xC4xC8).63C2 = C4:C8:14C4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).63C2 | 128,503 |
(C2xC4xC8).64C2 = C2xC16:5C4 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).64C2 | 128,838 |
(C2xC4xC8).65C2 = C4xM5(2) | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).65C2 | 128,839 |
(C2xC4xC8).66C2 = C4:M5(2) | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).66C2 | 128,882 |
(C2xC4xC8).67C2 = C42.6C8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).67C2 | 128,895 |
(C2xC4xC8).68C2 = C2xC8:4Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 128 | | (C2xC4xC8).68C2 | 128,1691 |
(C2xC4xC8).69C2 = C42.286C23 | φ: C2/C1 → C2 ⊆ Aut C2xC4xC8 | 64 | | (C2xC4xC8).69C2 | 128,1692 |