Extensions 1→N→G→Q→1 with N=D4 and Q=M4(2)

Direct product G=NxQ with N=D4 and Q=M4(2)
dρLabelID
D4xM4(2)32D4xM4(2)128,1666

Semidirect products G=N:Q with N=D4 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
D4:1M4(2) = C8:9D8φ: M4(2)/C8C2 ⊆ Out D464D4:1M4(2)128,313
D4:2M4(2) = D4:2M4(2)φ: M4(2)/C8C2 ⊆ Out D464D4:2M4(2)128,318
D4:3M4(2) = D4:M4(2)φ: M4(2)/C2xC4C2 ⊆ Out D432D4:3M4(2)128,218
D4:4M4(2) = D4:4M4(2)φ: M4(2)/C2xC4C2 ⊆ Out D464D4:4M4(2)128,221
D4:5M4(2) = D4:5M4(2)φ: M4(2)/C2xC4C2 ⊆ Out D432D4:5M4(2)128,222
D4:6M4(2) = D4:6M4(2)φ: trivial image64D4:6M4(2)128,1702
D4:7M4(2) = D4:7M4(2)φ: trivial image32D4:7M4(2)128,1706
D4:8M4(2) = D4:8M4(2)φ: trivial image64D4:8M4(2)128,1722

Non-split extensions G=N.Q with N=D4 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
D4.1M4(2) = C8:12SD16φ: M4(2)/C8C2 ⊆ Out D464D4.1M4(2)128,314
D4.2M4(2) = D4.M4(2)φ: M4(2)/C8C2 ⊆ Out D464D4.2M4(2)128,317
D4.3M4(2) = C42.374D4φ: M4(2)/C2xC4C2 ⊆ Out D464D4.3M4(2)128,220

׿
x
:
Z
F
o
wr
Q
<