extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1(C3xS3) = C3xDic3:C4 | φ: C3xS3/C32 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).1(C3xS3) | 144,77 |
(C2xC4).2(C3xS3) = C3xC4.Dic3 | φ: C3xS3/C32 → C2 ⊆ Aut C2xC4 | 24 | 2 | (C2xC4).2(C3xS3) | 144,75 |
(C2xC4).3(C3xS3) = C3xC4:Dic3 | φ: C3xS3/C32 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).3(C3xS3) | 144,78 |
(C2xC4).4(C3xS3) = C6xDic6 | φ: C3xS3/C32 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).4(C3xS3) | 144,158 |
(C2xC4).5(C3xS3) = C6xC3:C8 | central extension (φ=1) | 48 | | (C2xC4).5(C3xS3) | 144,74 |
(C2xC4).6(C3xS3) = Dic3xC12 | central extension (φ=1) | 48 | | (C2xC4).6(C3xS3) | 144,76 |