Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C3xS3

Direct product G=NxQ with N=C2xC4 and Q=C3xS3
dρLabelID
S3xC2xC1248S3xC2xC12144,159

Semidirect products G=N:Q with N=C2xC4 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C3xS3) = C3xD6:C4φ: C3xS3/C32C2 ⊆ Aut C2xC448(C2xC4):1(C3xS3)144,79
(C2xC4):2(C3xS3) = C6xD12φ: C3xS3/C32C2 ⊆ Aut C2xC448(C2xC4):2(C3xS3)144,160
(C2xC4):3(C3xS3) = C3xC4oD12φ: C3xS3/C32C2 ⊆ Aut C2xC4242(C2xC4):3(C3xS3)144,161

Non-split extensions G=N.Q with N=C2xC4 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C3xS3) = C3xDic3:C4φ: C3xS3/C32C2 ⊆ Aut C2xC448(C2xC4).1(C3xS3)144,77
(C2xC4).2(C3xS3) = C3xC4.Dic3φ: C3xS3/C32C2 ⊆ Aut C2xC4242(C2xC4).2(C3xS3)144,75
(C2xC4).3(C3xS3) = C3xC4:Dic3φ: C3xS3/C32C2 ⊆ Aut C2xC448(C2xC4).3(C3xS3)144,78
(C2xC4).4(C3xS3) = C6xDic6φ: C3xS3/C32C2 ⊆ Aut C2xC448(C2xC4).4(C3xS3)144,158
(C2xC4).5(C3xS3) = C6xC3:C8central extension (φ=1)48(C2xC4).5(C3xS3)144,74
(C2xC4).6(C3xS3) = Dic3xC12central extension (φ=1)48(C2xC4).6(C3xS3)144,76

׿
x
:
Z
F
o
wr
Q
<