Extensions 1→N→G→Q→1 with N=C3xDic3 and Q=C4

Direct product G=NxQ with N=C3xDic3 and Q=C4
dρLabelID
Dic3xC1248Dic3xC12144,76

Semidirect products G=N:Q with N=C3xDic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xDic3):1C4 = Dic3:Dic3φ: C4/C2C2 ⊆ Out C3xDic348(C3xDic3):1C4144,66
(C3xDic3):2C4 = Dic32φ: C4/C2C2 ⊆ Out C3xDic348(C3xDic3):2C4144,63
(C3xDic3):3C4 = C3xDic3:C4φ: C4/C2C2 ⊆ Out C3xDic348(C3xDic3):3C4144,77

Non-split extensions G=N.Q with N=C3xDic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xDic3).1C4 = D6.Dic3φ: C4/C2C2 ⊆ Out C3xDic3484(C3xDic3).1C4144,54
(C3xDic3).2C4 = S3xC3:C8φ: C4/C2C2 ⊆ Out C3xDic3484(C3xDic3).2C4144,52
(C3xDic3).3C4 = C3xC8:S3φ: C4/C2C2 ⊆ Out C3xDic3482(C3xDic3).3C4144,70
(C3xDic3).4C4 = S3xC24φ: trivial image482(C3xDic3).4C4144,69

׿
x
:
Z
F
o
wr
Q
<