Copied to
clipboard

G = D10.3Q8order 160 = 25·5

3rd non-split extension by D10 of Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D10.3Q8, D10.10D4, C10.5C42, (C2xF5):C4, (C2xC4):2F5, (C2xC20):2C4, D5.(C4:C4), C2.5(C4xF5), C2.3(C4:F5), C10.7(C4:C4), (C2xDic5):6C4, D10.7(C2xC4), C5:(C2.C42), D5.(C22:C4), C2.2(C22:F5), (C22xF5).1C2, C22.13(C2xF5), C10.4(C22:C4), (C22xD5).35C22, (C2xC4xD5).9C2, (C2xC10).9(C2xC4), SmallGroup(160,81)

Series: Derived Chief Lower central Upper central

C1C10 — D10.3Q8
C1C5D5D10C22xD5C22xF5 — D10.3Q8
C5C10 — D10.3Q8
C1C22C2xC4

Generators and relations for D10.3Q8
 G = < a,b,c,d | a10=b2=c4=1, d2=a4bc2, bab=a-1, ac=ca, dad-1=a3, bc=cb, dbd-1=a2b, dcd-1=a5c-1 >

Subgroups: 268 in 76 conjugacy classes, 32 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2xC4, C2xC4, C23, D5, C10, C22xC4, Dic5, C20, F5, D10, D10, C2xC10, C2.C42, C4xD5, C2xDic5, C2xC20, C2xF5, C2xF5, C22xD5, C2xC4xD5, C22xF5, D10.3Q8
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C42, C22:C4, C4:C4, F5, C2.C42, C2xF5, C4xF5, C4:F5, C22:F5, D10.3Q8

Character table of D10.3Q8

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L510A10B10C20A20B20C20D
 size 11115555221010101010101010101044444444
ρ11111111111111111111111111111    trivial
ρ21111111111-11-1-1-1-1-1-1-1111111111    linear of order 2
ρ311111111-1-11-1-1-1-1-1111-11111-1-1-1-1    linear of order 2
ρ411111111-1-1-1-11111-1-1-1-11111-1-1-1-1    linear of order 2
ρ51111-1-1-1-1-1-1i1ii-i-i-i-ii11111-1-1-1-1    linear of order 4
ρ61111-1-1-1-1-1-1-i1-i-iiiii-i11111-1-1-1-1    linear of order 4
ρ711-1-1-1-111i-i-1ii-i-ii-111-i1-11-1-i-iii    linear of order 4
ρ811-1-1-1-111i-i1i-iii-i1-1-1-i1-11-1-i-iii    linear of order 4
ρ911-1-1-1-111-ii-1-i-iii-i-111i1-11-1ii-i-i    linear of order 4
ρ1011-1-1-1-111-ii1-ii-i-ii1-1-1i1-11-1ii-i-i    linear of order 4
ρ111111-1-1-1-111i-1-i-iii-i-ii-111111111    linear of order 4
ρ121111-1-1-1-111-i-1ii-i-iii-i-111111111    linear of order 4
ρ1311-1-111-1-1i-ii-i-11-11-ii-ii1-11-1-i-iii    linear of order 4
ρ1411-1-111-1-1i-i-i-i1-11-1i-iii1-11-1-i-iii    linear of order 4
ρ1511-1-111-1-1-iiii1-11-1-ii-i-i1-11-1ii-i-i    linear of order 4
ρ1611-1-111-1-1-ii-ii-11-11i-ii-i1-11-1ii-i-i    linear of order 4
ρ172-22-22-2-220000000000002-2-220000    orthogonal lifted from D4
ρ182-22-2-222-20000000000002-2-220000    orthogonal lifted from D4
ρ192-2-22-22-2200000000000022-2-20000    orthogonal lifted from D4
ρ202-2-222-22-200000000000022-2-20000    symplectic lifted from Q8, Schur index 2
ρ2144440000440000000000-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ2244440000-4-40000000000-1-1-1-11111    orthogonal lifted from C2xF5
ρ234-44-40000000000000000-111-1-555-5    orthogonal lifted from C22:F5
ρ244-44-40000000000000000-111-15-5-55    orthogonal lifted from C22:F5
ρ2544-4-40000-4i4i0000000000-11-11-i-iii    complex lifted from C4xF5
ρ2644-4-400004i-4i0000000000-11-11ii-i-i    complex lifted from C4xF5
ρ274-4-440000000000000000-1-111--5-5--5-5    complex lifted from C4:F5
ρ284-4-440000000000000000-1-111-5--5-5--5    complex lifted from C4:F5

Smallest permutation representation of D10.3Q8
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 30)(11 32)(12 31)(13 40)(14 39)(15 38)(16 37)(17 36)(18 35)(19 34)(20 33)
(1 33 30 11)(2 34 21 12)(3 35 22 13)(4 36 23 14)(5 37 24 15)(6 38 25 16)(7 39 26 17)(8 40 27 18)(9 31 28 19)(10 32 29 20)
(1 33 6 38)(2 40 5 31)(3 37 4 34)(7 35 10 36)(8 32 9 39)(11 25 16 30)(12 22 15 23)(13 29 14 26)(17 27 20 28)(18 24 19 21)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,32)(12,31)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33), (1,33,30,11)(2,34,21,12)(3,35,22,13)(4,36,23,14)(5,37,24,15)(6,38,25,16)(7,39,26,17)(8,40,27,18)(9,31,28,19)(10,32,29,20), (1,33,6,38)(2,40,5,31)(3,37,4,34)(7,35,10,36)(8,32,9,39)(11,25,16,30)(12,22,15,23)(13,29,14,26)(17,27,20,28)(18,24,19,21)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,32)(12,31)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33), (1,33,30,11)(2,34,21,12)(3,35,22,13)(4,36,23,14)(5,37,24,15)(6,38,25,16)(7,39,26,17)(8,40,27,18)(9,31,28,19)(10,32,29,20), (1,33,6,38)(2,40,5,31)(3,37,4,34)(7,35,10,36)(8,32,9,39)(11,25,16,30)(12,22,15,23)(13,29,14,26)(17,27,20,28)(18,24,19,21) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,30),(11,32),(12,31),(13,40),(14,39),(15,38),(16,37),(17,36),(18,35),(19,34),(20,33)], [(1,33,30,11),(2,34,21,12),(3,35,22,13),(4,36,23,14),(5,37,24,15),(6,38,25,16),(7,39,26,17),(8,40,27,18),(9,31,28,19),(10,32,29,20)], [(1,33,6,38),(2,40,5,31),(3,37,4,34),(7,35,10,36),(8,32,9,39),(11,25,16,30),(12,22,15,23),(13,29,14,26),(17,27,20,28),(18,24,19,21)]])

D10.3Q8 is a maximal subgroup of
D10.1D8  D10.1Q16  D10.SD16  D10.Q16  C42:4F5  C4xC4:F5  C42:9F5  C42:5F5  C22:C4xF5  D10:(C4:C4)  C10.(C4xD4)  C4:C4xF5  C4:C4:5F5  C20:(C4:C4)  C4xC22:F5  (C22xC4):7F5  D10:6(C4:C4)  (C2xF5):D4  (C2xF5):Q8  D10.20D12  D10.10D12
D10.3Q8 is a maximal quotient of
C42:6F5  C42:3F5  (C22xF5):C4  C22:C4.F5  D10.18D8  C20.C42  D10.3M4(2)  D10.10D8  (C2xC8):F5  C20.24C42  C20.10C42  C20.25C42  M4(2):F5  M4(2):3F5  M4(2).F5  M4(2):4F5  C22:F5:C4  C10.(C4:C8)  C22.F5:C4  D10.20D12  D10.10D12

Matrix representation of D10.3Q8 in GL6(F41)

4000000
0400000
0000401
0000400
0010400
0001400
,
100000
010000
0000040
0000400
0004000
0040000
,
120000
0400000
00727014
000342714
001427340
00140277
,
32230000
990000
00703427
00027734
001434727
001427340

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40,0,0,1,0,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40,0,0,0],[1,0,0,0,0,0,2,40,0,0,0,0,0,0,7,0,14,14,0,0,27,34,27,0,0,0,0,27,34,27,0,0,14,14,0,7],[32,9,0,0,0,0,23,9,0,0,0,0,0,0,7,0,14,14,0,0,0,27,34,27,0,0,34,7,7,34,0,0,27,34,27,0] >;

D10.3Q8 in GAP, Magma, Sage, TeX

D_{10}._3Q_8
% in TeX

G:=Group("D10.3Q8");
// GroupNames label

G:=SmallGroup(160,81);
// by ID

G=gap.SmallGroup(160,81);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,217,55,2309,1169]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^4=1,d^2=a^4*b*c^2,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^3,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=a^5*c^-1>;
// generators/relations

Export

Character table of D10.3Q8 in TeX

׿
x
:
Z
F
o
wr
Q
<