metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D10.3Q8, D10.10D4, C10.5C42, (C2xF5):C4, (C2xC4):2F5, (C2xC20):2C4, D5.(C4:C4), C2.5(C4xF5), C2.3(C4:F5), C10.7(C4:C4), (C2xDic5):6C4, D10.7(C2xC4), C5:(C2.C42), D5.(C22:C4), C2.2(C22:F5), (C22xF5).1C2, C22.13(C2xF5), C10.4(C22:C4), (C22xD5).35C22, (C2xC4xD5).9C2, (C2xC10).9(C2xC4), SmallGroup(160,81)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D10.3Q8
G = < a,b,c,d | a10=b2=c4=1, d2=a4bc2, bab=a-1, ac=ca, dad-1=a3, bc=cb, dbd-1=a2b, dcd-1=a5c-1 >
Subgroups: 268 in 76 conjugacy classes, 32 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2xC4, C2xC4, C23, D5, C10, C22xC4, Dic5, C20, F5, D10, D10, C2xC10, C2.C42, C4xD5, C2xDic5, C2xC20, C2xF5, C2xF5, C22xD5, C2xC4xD5, C22xF5, D10.3Q8
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C42, C22:C4, C4:C4, F5, C2.C42, C2xF5, C4xF5, C4:F5, C22:F5, D10.3Q8
Character table of D10.3Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5 | 10A | 10B | 10C | 20A | 20B | 20C | 20D | |
size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 2 | 2 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | i | 1 | i | i | -i | -i | -i | -i | i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -i | 1 | -i | -i | i | i | i | i | -i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -1 | i | i | -i | -i | i | -1 | 1 | 1 | -i | 1 | -1 | 1 | -1 | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | 1 | i | -i | i | i | -i | 1 | -1 | -1 | -i | 1 | -1 | 1 | -1 | -i | -i | i | i | linear of order 4 |
ρ9 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -1 | -i | -i | i | i | -i | -1 | 1 | 1 | i | 1 | -1 | 1 | -1 | i | i | -i | -i | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | 1 | -i | i | -i | -i | i | 1 | -1 | -1 | i | 1 | -1 | 1 | -1 | i | i | -i | -i | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -1 | -i | -i | i | i | -i | -i | i | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -1 | i | i | -i | -i | i | i | -i | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ13 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | i | -i | -1 | 1 | -1 | 1 | -i | i | -i | i | 1 | -1 | 1 | -1 | -i | -i | i | i | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | i | -i | -i | -i | 1 | -1 | 1 | -1 | i | -i | i | i | 1 | -1 | 1 | -1 | -i | -i | i | i | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | i | i | 1 | -1 | 1 | -1 | -i | i | -i | -i | 1 | -1 | 1 | -1 | i | i | -i | -i | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -i | i | -i | i | -1 | 1 | -1 | 1 | i | -i | i | -i | 1 | -1 | 1 | -1 | i | i | -i | -i | linear of order 4 |
ρ17 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ22 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from C2xF5 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -√5 | √5 | √5 | -√5 | orthogonal lifted from C22:F5 |
ρ24 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | √5 | -√5 | -√5 | √5 | orthogonal lifted from C22:F5 |
ρ25 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -i | -i | i | i | complex lifted from C4xF5 |
ρ26 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | i | i | -i | -i | complex lifted from C4xF5 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | -√-5 | √-5 | -√-5 | √-5 | complex lifted from C4:F5 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | √-5 | -√-5 | √-5 | -√-5 | complex lifted from C4:F5 |
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 30)(11 32)(12 31)(13 40)(14 39)(15 38)(16 37)(17 36)(18 35)(19 34)(20 33)
(1 33 30 11)(2 34 21 12)(3 35 22 13)(4 36 23 14)(5 37 24 15)(6 38 25 16)(7 39 26 17)(8 40 27 18)(9 31 28 19)(10 32 29 20)
(1 33 6 38)(2 40 5 31)(3 37 4 34)(7 35 10 36)(8 32 9 39)(11 25 16 30)(12 22 15 23)(13 29 14 26)(17 27 20 28)(18 24 19 21)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,32)(12,31)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33), (1,33,30,11)(2,34,21,12)(3,35,22,13)(4,36,23,14)(5,37,24,15)(6,38,25,16)(7,39,26,17)(8,40,27,18)(9,31,28,19)(10,32,29,20), (1,33,6,38)(2,40,5,31)(3,37,4,34)(7,35,10,36)(8,32,9,39)(11,25,16,30)(12,22,15,23)(13,29,14,26)(17,27,20,28)(18,24,19,21)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,32)(12,31)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33), (1,33,30,11)(2,34,21,12)(3,35,22,13)(4,36,23,14)(5,37,24,15)(6,38,25,16)(7,39,26,17)(8,40,27,18)(9,31,28,19)(10,32,29,20), (1,33,6,38)(2,40,5,31)(3,37,4,34)(7,35,10,36)(8,32,9,39)(11,25,16,30)(12,22,15,23)(13,29,14,26)(17,27,20,28)(18,24,19,21) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,30),(11,32),(12,31),(13,40),(14,39),(15,38),(16,37),(17,36),(18,35),(19,34),(20,33)], [(1,33,30,11),(2,34,21,12),(3,35,22,13),(4,36,23,14),(5,37,24,15),(6,38,25,16),(7,39,26,17),(8,40,27,18),(9,31,28,19),(10,32,29,20)], [(1,33,6,38),(2,40,5,31),(3,37,4,34),(7,35,10,36),(8,32,9,39),(11,25,16,30),(12,22,15,23),(13,29,14,26),(17,27,20,28),(18,24,19,21)]])
D10.3Q8 is a maximal subgroup of
D10.1D8 D10.1Q16 D10.SD16 D10.Q16 C42:4F5 C4xC4:F5 C42:9F5 C42:5F5 C22:C4xF5 D10:(C4:C4) C10.(C4xD4) C4:C4xF5 C4:C4:5F5 C20:(C4:C4) C4xC22:F5 (C22xC4):7F5 D10:6(C4:C4) (C2xF5):D4 (C2xF5):Q8 D10.20D12 D10.10D12
D10.3Q8 is a maximal quotient of
C42:6F5 C42:3F5 (C22xF5):C4 C22:C4.F5 D10.18D8 C20.C42 D10.3M4(2) D10.10D8 (C2xC8):F5 C20.24C42 C20.10C42 C20.25C42 M4(2):F5 M4(2):3F5 M4(2).F5 M4(2):4F5 C22:F5:C4 C10.(C4:C8) C22.F5:C4 D10.20D12 D10.10D12
Matrix representation of D10.3Q8 ►in GL6(F41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 1 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 1 | 0 | 40 | 0 |
0 | 0 | 0 | 1 | 40 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
1 | 2 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 27 | 0 | 14 |
0 | 0 | 0 | 34 | 27 | 14 |
0 | 0 | 14 | 27 | 34 | 0 |
0 | 0 | 14 | 0 | 27 | 7 |
32 | 23 | 0 | 0 | 0 | 0 |
9 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 34 | 27 |
0 | 0 | 0 | 27 | 7 | 34 |
0 | 0 | 14 | 34 | 7 | 27 |
0 | 0 | 14 | 27 | 34 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40,0,0,1,0,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40,0,0,0],[1,0,0,0,0,0,2,40,0,0,0,0,0,0,7,0,14,14,0,0,27,34,27,0,0,0,0,27,34,27,0,0,14,14,0,7],[32,9,0,0,0,0,23,9,0,0,0,0,0,0,7,0,14,14,0,0,0,27,34,27,0,0,34,7,7,34,0,0,27,34,27,0] >;
D10.3Q8 in GAP, Magma, Sage, TeX
D_{10}._3Q_8
% in TeX
G:=Group("D10.3Q8");
// GroupNames label
G:=SmallGroup(160,81);
// by ID
G=gap.SmallGroup(160,81);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,217,55,2309,1169]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^2=c^4=1,d^2=a^4*b*c^2,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^3,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=a^5*c^-1>;
// generators/relations
Export