Extensions 1→N→G→Q→1 with N=C5xD4 and Q=C4

Direct product G=NxQ with N=C5xD4 and Q=C4
dρLabelID
D4xC2080D4xC20160,179

Semidirect products G=N:Q with N=C5xD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5xD4):1C4 = D20:C4φ: C4/C1C4 ⊆ Out C5xD4408+(C5xD4):1C4160,82
(C5xD4):2C4 = D4:F5φ: C4/C1C4 ⊆ Out C5xD4408-(C5xD4):2C4160,83
(C5xD4):3C4 = D4xF5φ: C4/C1C4 ⊆ Out C5xD4208+(C5xD4):3C4160,207
(C5xD4):4C4 = D4:Dic5φ: C4/C2C2 ⊆ Out C5xD480(C5xD4):4C4160,39
(C5xD4):5C4 = D4:2Dic5φ: C4/C2C2 ⊆ Out C5xD4404(C5xD4):5C4160,44
(C5xD4):6C4 = D4xDic5φ: C4/C2C2 ⊆ Out C5xD480(C5xD4):6C4160,155
(C5xD4):7C4 = C5xD4:C4φ: C4/C2C2 ⊆ Out C5xD480(C5xD4):7C4160,52
(C5xD4):8C4 = C5xC4wrC2φ: C4/C2C2 ⊆ Out C5xD4402(C5xD4):8C4160,54

Non-split extensions G=N.Q with N=C5xD4 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5xD4).C4 = D4.F5φ: C4/C1C4 ⊆ Out C5xD4808-(C5xD4).C4160,206
(C5xD4).2C4 = D4.Dic5φ: C4/C2C2 ⊆ Out C5xD4804(C5xD4).2C4160,169
(C5xD4).3C4 = C5xC8oD4φ: trivial image802(C5xD4).3C4160,192

׿
x
:
Z
F
o
wr
Q
<