Extensions 1→N→G→Q→1 with N=C2xC8 and Q=C10

Direct product G=NxQ with N=C2xC8 and Q=C10
dρLabelID
C22xC40160C2^2xC40160,190

Semidirect products G=N:Q with N=C2xC8 and Q=C10
extensionφ:Q→Aut NdρLabelID
(C2xC8):1C10 = C5xC22:C8φ: C10/C5C2 ⊆ Aut C2xC880(C2xC8):1C10160,48
(C2xC8):2C10 = C5xD4:C4φ: C10/C5C2 ⊆ Aut C2xC880(C2xC8):2C10160,52
(C2xC8):3C10 = C10xD8φ: C10/C5C2 ⊆ Aut C2xC880(C2xC8):3C10160,193
(C2xC8):4C10 = C5xC4oD8φ: C10/C5C2 ⊆ Aut C2xC8802(C2xC8):4C10160,196
(C2xC8):5C10 = C10xSD16φ: C10/C5C2 ⊆ Aut C2xC880(C2xC8):5C10160,194
(C2xC8):6C10 = C10xM4(2)φ: C10/C5C2 ⊆ Aut C2xC880(C2xC8):6C10160,191
(C2xC8):7C10 = C5xC8oD4φ: C10/C5C2 ⊆ Aut C2xC8802(C2xC8):7C10160,192

Non-split extensions G=N.Q with N=C2xC8 and Q=C10
extensionφ:Q→Aut NdρLabelID
(C2xC8).1C10 = C5xQ8:C4φ: C10/C5C2 ⊆ Aut C2xC8160(C2xC8).1C10160,53
(C2xC8).2C10 = C5xC4:C8φ: C10/C5C2 ⊆ Aut C2xC8160(C2xC8).2C10160,55
(C2xC8).3C10 = C5xC2.D8φ: C10/C5C2 ⊆ Aut C2xC8160(C2xC8).3C10160,57
(C2xC8).4C10 = C10xQ16φ: C10/C5C2 ⊆ Aut C2xC8160(C2xC8).4C10160,195
(C2xC8).5C10 = C5xC8.C4φ: C10/C5C2 ⊆ Aut C2xC8802(C2xC8).5C10160,58
(C2xC8).6C10 = C5xC4.Q8φ: C10/C5C2 ⊆ Aut C2xC8160(C2xC8).6C10160,56
(C2xC8).7C10 = C5xC8:C4φ: C10/C5C2 ⊆ Aut C2xC8160(C2xC8).7C10160,47
(C2xC8).8C10 = C5xM5(2)φ: C10/C5C2 ⊆ Aut C2xC8802(C2xC8).8C10160,60

׿
x
:
Z
F
o
wr
Q
<