non-abelian, soluble, monomial
Aliases: A4:2M4(2), C24.2Dic3, A4:C8:5C2, C4.31(C2xS4), (C4xA4).1C4, (C2xC4).12S4, C4.1(A4:C4), (C23xC4).4S3, (C22xA4).3C4, (C22xC4).11D6, C22:(C4.Dic3), C22.4(A4:C4), (C4xA4).15C22, C23.2(C2xDic3), (C22xC4).3Dic3, (C2xC4xA4).4C2, C2.3(C2xA4:C4), (C2xA4).7(C2xC4), SmallGroup(192,968)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for A4:M4(2)
G = < a,b,c,d,e | a2=b2=c3=d8=e2=1, cac-1=dad-1=ab=ba, ae=ea, cbc-1=a, bd=db, be=eb, dcd-1=c-1, ce=ec, ede=d5 >
Subgroups: 254 in 81 conjugacy classes, 21 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C8, C2xC4, C2xC4, C23, C23, C12, A4, C2xC6, C2xC8, M4(2), C22xC4, C22xC4, C24, C3:C8, C2xC12, C2xA4, C2xA4, C22:C8, C2xM4(2), C23xC4, C4.Dic3, C4xA4, C22xA4, C24.4C4, A4:C8, C2xC4xA4, A4:M4(2)
Quotients: C1, C2, C4, C22, S3, C2xC4, Dic3, D6, M4(2), C2xDic3, S4, C4.Dic3, A4:C4, C2xS4, C2xA4:C4, A4:M4(2)
Character table of A4:M4(2)
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 2 | 3 | 3 | 6 | 8 | 1 | 1 | 2 | 3 | 3 | 6 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | i | i | i | -i | -i | -i | -i | i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -i | -i | -i | i | i | i | i | -i | 1 | 1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | -2 | 2 | 2 | -2 | -1 | 2 | 2 | -2 | 2 | 2 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | -2 | -2 | -2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ12 | 2 | 2 | -2 | 2 | 2 | -2 | -1 | -2 | -2 | 2 | -2 | -2 | 2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ13 | 2 | -2 | 0 | -2 | 2 | 0 | 2 | 2i | -2i | 0 | 2i | -2i | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | complex lifted from M4(2) |
ρ14 | 2 | -2 | 0 | -2 | 2 | 0 | 2 | -2i | 2i | 0 | -2i | 2i | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | complex lifted from M4(2) |
ρ15 | 2 | -2 | 0 | -2 | 2 | 0 | -1 | -2i | 2i | 0 | -2i | 2i | 0 | -√-3 | 1 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | -i | i | complex lifted from C4.Dic3 |
ρ16 | 2 | -2 | 0 | -2 | 2 | 0 | -1 | 2i | -2i | 0 | 2i | -2i | 0 | -√-3 | 1 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | i | -i | complex lifted from C4.Dic3 |
ρ17 | 2 | -2 | 0 | -2 | 2 | 0 | -1 | -2i | 2i | 0 | -2i | 2i | 0 | √-3 | 1 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | -i | i | complex lifted from C4.Dic3 |
ρ18 | 2 | -2 | 0 | -2 | 2 | 0 | -1 | 2i | -2i | 0 | 2i | -2i | 0 | √-3 | 1 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | i | -i | complex lifted from C4.Dic3 |
ρ19 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ20 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS4 |
ρ21 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ22 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ23 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | -3 | -3 | 3 | 1 | 1 | -1 | 0 | 0 | 0 | i | -i | i | i | -i | i | -i | -i | 0 | 0 | 0 | 0 | complex lifted from A4:C4 |
ρ24 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | -3 | -3 | -3 | 1 | 1 | 1 | 0 | 0 | 0 | i | i | -i | -i | i | i | -i | -i | 0 | 0 | 0 | 0 | complex lifted from A4:C4 |
ρ25 | 3 | 3 | -3 | -1 | -1 | 1 | 0 | -3 | -3 | 3 | 1 | 1 | -1 | 0 | 0 | 0 | -i | i | -i | -i | i | -i | i | i | 0 | 0 | 0 | 0 | complex lifted from A4:C4 |
ρ26 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | -3 | -3 | -3 | 1 | 1 | 1 | 0 | 0 | 0 | -i | -i | i | i | -i | -i | i | i | 0 | 0 | 0 | 0 | complex lifted from A4:C4 |
ρ27 | 6 | -6 | 0 | 2 | -2 | 0 | 0 | 6i | -6i | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 6 | -6 | 0 | 2 | -2 | 0 | 0 | -6i | 6i | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 5)(3 7)(9 13)(10 14)(11 15)(12 16)(17 21)(19 23)
(1 5)(2 6)(3 7)(4 8)(17 21)(18 22)(19 23)(20 24)
(1 22 11)(2 12 23)(3 24 13)(4 14 17)(5 18 15)(6 16 19)(7 20 9)(8 10 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 6)(4 8)(10 14)(12 16)(17 21)(19 23)
G:=sub<Sym(24)| (1,5)(3,7)(9,13)(10,14)(11,15)(12,16)(17,21)(19,23), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24), (1,22,11)(2,12,23)(3,24,13)(4,14,17)(5,18,15)(6,16,19)(7,20,9)(8,10,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23)>;
G:=Group( (1,5)(3,7)(9,13)(10,14)(11,15)(12,16)(17,21)(19,23), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24), (1,22,11)(2,12,23)(3,24,13)(4,14,17)(5,18,15)(6,16,19)(7,20,9)(8,10,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,6)(4,8)(10,14)(12,16)(17,21)(19,23) );
G=PermutationGroup([[(1,5),(3,7),(9,13),(10,14),(11,15),(12,16),(17,21),(19,23)], [(1,5),(2,6),(3,7),(4,8),(17,21),(18,22),(19,23),(20,24)], [(1,22,11),(2,12,23),(3,24,13),(4,14,17),(5,18,15),(6,16,19),(7,20,9),(8,10,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,6),(4,8),(10,14),(12,16),(17,21),(19,23)]])
G:=TransitiveGroup(24,294);
Matrix representation of A4:M4(2) ►in GL5(F73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
64 | 71 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 72 |
0 | 0 | 0 | 1 | 0 |
8 | 51 | 0 | 0 | 0 |
5 | 65 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
72 | 47 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,72,0,0,0,1,72,0],[1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,72,0,1,0,0,72,1,0],[64,0,0,0,0,71,8,0,0,0,0,0,1,72,0,0,0,0,72,1,0,0,0,72,0],[8,5,0,0,0,51,65,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0],[72,0,0,0,0,47,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;
A4:M4(2) in GAP, Magma, Sage, TeX
A_4\rtimes M_4(2)
% in TeX
G:=Group("A4:M4(2)");
// GroupNames label
G:=SmallGroup(192,968);
// by ID
G=gap.SmallGroup(192,968);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,28,141,58,1124,4037,285,2358,475]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^8=e^2=1,c*a*c^-1=d*a*d^-1=a*b=b*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^5>;
// generators/relations
Export