Extensions 1→N→G→Q→1 with N=C2xC4.A4 and Q=C2

Direct product G=NxQ with N=C2xC4.A4 and Q=C2
dρLabelID
C22xC4.A464C2^2xC4.A4192,1500

Semidirect products G=N:Q with N=C2xC4.A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC4.A4):1C2 = SL2(F3):D4φ: C2/C1C2 ⊆ Out C2xC4.A432(C2xC4.A4):1C2192,986
(C2xC4.A4):2C2 = SL2(F3):5D4φ: C2/C1C2 ⊆ Out C2xC4.A432(C2xC4.A4):2C2192,1003
(C2xC4.A4):3C2 = SL2(F3):6D4φ: C2/C1C2 ⊆ Out C2xC4.A464(C2xC4.A4):3C2192,1005
(C2xC4.A4):4C2 = C2xC4.3S4φ: C2/C1C2 ⊆ Out C2xC4.A432(C2xC4.A4):4C2192,1481
(C2xC4.A4):5C2 = GL2(F3):C22φ: C2/C1C2 ⊆ Out C2xC4.A4324(C2xC4.A4):5C2192,1482
(C2xC4.A4):6C2 = C2xC4.6S4φ: C2/C1C2 ⊆ Out C2xC4.A432(C2xC4.A4):6C2192,1480
(C2xC4.A4):7C2 = C2xQ8.A4φ: C2/C1C2 ⊆ Out C2xC4.A448(C2xC4.A4):7C2192,1502
(C2xC4.A4):8C2 = C2xD4.A4φ: C2/C1C2 ⊆ Out C2xC4.A432(C2xC4.A4):8C2192,1503
(C2xC4.A4):9C2 = 2- 1+4:3C6φ: C2/C1C2 ⊆ Out C2xC4.A4324(C2xC4.A4):9C2192,1504

Non-split extensions G=N.Q with N=C2xC4.A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC4.A4).1C2 = SL2(F3).D4φ: C2/C1C2 ⊆ Out C2xC4.A464(C2xC4.A4).1C2192,984
(C2xC4.A4).2C2 = (C2xC4).S4φ: C2/C1C2 ⊆ Out C2xC4.A464(C2xC4.A4).2C2192,985
(C2xC4.A4).3C2 = C2xC4.S4φ: C2/C1C2 ⊆ Out C2xC4.A464(C2xC4.A4).3C2192,1479
(C2xC4.A4).4C2 = U2(F3):C2φ: C2/C1C2 ⊆ Out C2xC4.A4324(C2xC4.A4).4C2192,982
(C2xC4.A4).5C2 = C2xU2(F3)φ: C2/C1C2 ⊆ Out C2xC4.A448(C2xC4.A4).5C2192,981
(C2xC4.A4).6C2 = C4.A4:C4φ: C2/C1C2 ⊆ Out C2xC4.A464(C2xC4.A4).6C2192,983
(C2xC4.A4).7C2 = C4oD4:C12φ: C2/C1C2 ⊆ Out C2xC4.A464(C2xC4.A4).7C2192,999
(C2xC4.A4).8C2 = M4(2).A4φ: C2/C1C2 ⊆ Out C2xC4.A4324(C2xC4.A4).8C2192,1013
(C2xC4.A4).9C2 = C4xC4.A4φ: trivial image64(C2xC4.A4).9C2192,997
(C2xC4.A4).10C2 = C2xC8.A4φ: trivial image64(C2xC4.A4).10C2192,1012

׿
x
:
Z
F
o
wr
Q
<