Extensions 1→N→G→Q→1 with N=D4 and Q=C3:D4

Direct product G=NxQ with N=D4 and Q=C3:D4
dρLabelID
D4xC3:D448D4xC3:D4192,1360

Semidirect products G=N:Q with N=D4 and Q=C3:D4
extensionφ:Q→Out NdρLabelID
D4:1(C3:D4) = Dic3:D8φ: C3:D4/Dic3C2 ⊆ Out D496D4:1(C3:D4)192,709
D4:2(C3:D4) = D12:D4φ: C3:D4/D6C2 ⊆ Out D448D4:2(C3:D4)192,715
D4:3(C3:D4) = Dic6:D4φ: C3:D4/D6C2 ⊆ Out D496D4:3(C3:D4)192,717
D4:4(C3:D4) = D12:18D4φ: C3:D4/D6C2 ⊆ Out D4248+D4:4(C3:D4)192,757
D4:5(C3:D4) = (C2xC6):8D8φ: C3:D4/C2xC6C2 ⊆ Out D448D4:5(C3:D4)192,776
D4:6(C3:D4) = (C3xD4):14D4φ: C3:D4/C2xC6C2 ⊆ Out D496D4:6(C3:D4)192,797
D4:7(C3:D4) = 2+ 1+4:6S3φ: C3:D4/C2xC6C2 ⊆ Out D4248+D4:7(C3:D4)192,800
D4:8(C3:D4) = C24.53D6φ: trivial image48D4:8(C3:D4)192,1365
D4:9(C3:D4) = C6.1042- 1+4φ: trivial image96D4:9(C3:D4)192,1383
D4:10(C3:D4) = C6.1452+ 1+4φ: trivial image48D4:10(C3:D4)192,1388

Non-split extensions G=N.Q with N=D4 and Q=C3:D4
extensionφ:Q→Out NdρLabelID
D4.1(C3:D4) = (C6xD8).C2φ: C3:D4/Dic3C2 ⊆ Out D496D4.1(C3:D4)192,712
D4.2(C3:D4) = Dic3:3SD16φ: C3:D4/Dic3C2 ⊆ Out D496D4.2(C3:D4)192,721
D4.3(C3:D4) = (C3xD4).D4φ: C3:D4/Dic3C2 ⊆ Out D496D4.3(C3:D4)192,724
D4.4(C3:D4) = M4(2).D6φ: C3:D4/Dic3C2 ⊆ Out D4488+D4.4(C3:D4)192,758
D4.5(C3:D4) = M4(2).13D6φ: C3:D4/Dic3C2 ⊆ Out D4488-D4.5(C3:D4)192,759
D4.6(C3:D4) = M4(2).15D6φ: C3:D4/Dic3C2 ⊆ Out D4488+D4.6(C3:D4)192,762
D4.7(C3:D4) = M4(2).16D6φ: C3:D4/Dic3C2 ⊆ Out D4968-D4.7(C3:D4)192,763
D4.8(C3:D4) = D6:6SD16φ: C3:D4/D6C2 ⊆ Out D448D4.8(C3:D4)192,728
D4.9(C3:D4) = Dic6.16D4φ: C3:D4/D6C2 ⊆ Out D496D4.9(C3:D4)192,732
D4.10(C3:D4) = D12.38D4φ: C3:D4/D6C2 ⊆ Out D4488-D4.10(C3:D4)192,760
D4.11(C3:D4) = D12.39D4φ: C3:D4/D6C2 ⊆ Out D4488+D4.11(C3:D4)192,761
D4.12(C3:D4) = D12.40D4φ: C3:D4/D6C2 ⊆ Out D4488-D4.12(C3:D4)192,764
D4.13(C3:D4) = (C3xD4).31D4φ: C3:D4/C2xC6C2 ⊆ Out D448D4.13(C3:D4)192,777
D4.14(C3:D4) = (C3xD4).32D4φ: C3:D4/C2xC6C2 ⊆ Out D496D4.14(C3:D4)192,798
D4.15(C3:D4) = 2+ 1+4.4S3φ: C3:D4/C2xC6C2 ⊆ Out D4488-D4.15(C3:D4)192,801
D4.16(C3:D4) = 2- 1+4:4S3φ: C3:D4/C2xC6C2 ⊆ Out D4488+D4.16(C3:D4)192,804
D4.17(C3:D4) = 2- 1+4.2S3φ: C3:D4/C2xC6C2 ⊆ Out D4488-D4.17(C3:D4)192,805
D4.18(C3:D4) = D12.32C23φ: trivial image488+D4.18(C3:D4)192,1394
D4.19(C3:D4) = D12.33C23φ: trivial image488-D4.19(C3:D4)192,1395
D4.20(C3:D4) = D12.34C23φ: trivial image488+D4.20(C3:D4)192,1396
D4.21(C3:D4) = D12.35C23φ: trivial image968-D4.21(C3:D4)192,1397

׿
x
:
Z
F
o
wr
Q
<