Extensions 1→N→G→Q→1 with N=C4xDic3 and Q=C4

Direct product G=NxQ with N=C4xDic3 and Q=C4
dρLabelID
Dic3xC42192Dic3xC4^2192,489

Semidirect products G=N:Q with N=C4xDic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4xDic3):1C4 = C23.D12φ: C4/C1C4 ⊆ Out C4xDic3488-(C4xDic3):1C4192,32
(C4xDic3):2C4 = C23.2D12φ: C4/C1C4 ⊆ Out C4xDic3248+(C4xDic3):2C4192,33
(C4xDic3):3C4 = C42:3Dic3φ: C4/C1C4 ⊆ Out C4xDic3484(C4xDic3):3C4192,90
(C4xDic3):4C4 = C12.20C42φ: C4/C1C4 ⊆ Out C4xDic3484(C4xDic3):4C4192,116
(C4xDic3):5C4 = C12.2C42φ: C4/C2C2 ⊆ Out C4xDic348(C4xDic3):5C4192,91
(C4xDic3):6C4 = C12.3C42φ: C4/C2C2 ⊆ Out C4xDic348(C4xDic3):6C4192,114
(C4xDic3):7C4 = Dic3xC4:C4φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3):7C4192,533
(C4xDic3):8C4 = (C4xDic3):8C4φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3):8C4192,534
(C4xDic3):9C4 = (C4xDic3):9C4φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3):9C4192,536
(C4xDic3):10C4 = Dic3.5C42φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3):10C4192,207
(C4xDic3):11C4 = Dic3:C42φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3):11C4192,208
(C4xDic3):12C4 = C3:(C42:8C4)φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3):12C4192,209
(C4xDic3):13C4 = C3:(C42:5C4)φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3):13C4192,210
(C4xDic3):14C4 = C4xDic3:C4φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3):14C4192,490
(C4xDic3):15C4 = C42:6Dic3φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3):15C4192,491

Non-split extensions G=N.Q with N=C4xDic3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4xDic3).1C4 = (C2xC4).D12φ: C4/C1C4 ⊆ Out C4xDic3488+(C4xDic3).1C4192,36
(C4xDic3).2C4 = (C2xC12).D4φ: C4/C1C4 ⊆ Out C4xDic3488-(C4xDic3).2C4192,37
(C4xDic3).3C4 = C48:C4φ: C4/C1C4 ⊆ Out C4xDic3484(C4xDic3).3C4192,71
(C4xDic3).4C4 = C24.97D4φ: C4/C2C2 ⊆ Out C4xDic3484(C4xDic3).4C4192,70
(C4xDic3).5C4 = S3xC4:C8φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).5C4192,391
(C4xDic3).6C4 = C42.200D6φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).6C4192,392
(C4xDic3).7C4 = C12:M4(2)φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).7C4192,396
(C4xDic3).8C4 = Dic3xM4(2)φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).8C4192,676
(C4xDic3).9C4 = Dic3:4M4(2)φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).9C4192,677
(C4xDic3).10C4 = Dic3:C16φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3).10C4192,60
(C4xDic3).11C4 = C48:10C4φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3).11C4192,61
(C4xDic3).12C4 = C42.282D6φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).12C4192,244
(C4xDic3).13C4 = C4xC8:S3φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).13C4192,246
(C4xDic3).14C4 = S3xC8:C4φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).14C4192,263
(C4xDic3).15C4 = C42.182D6φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).15C4192,264
(C4xDic3).16C4 = Dic3:5M4(2)φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).16C4192,266
(C4xDic3).17C4 = Dic3.5M4(2)φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).17C4192,277
(C4xDic3).18C4 = Dic3.M4(2)φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).18C4192,278
(C4xDic3).19C4 = C42.202D6φ: C4/C2C2 ⊆ Out C4xDic396(C4xDic3).19C4192,394
(C4xDic3).20C4 = C2xDic3:C8φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3).20C4192,658
(C4xDic3).21C4 = C2xC24:C4φ: C4/C2C2 ⊆ Out C4xDic3192(C4xDic3).21C4192,659
(C4xDic3).22C4 = Dic3xC16φ: trivial image192(C4xDic3).22C4192,59
(C4xDic3).23C4 = S3xC4xC8φ: trivial image96(C4xDic3).23C4192,243
(C4xDic3).24C4 = Dic3xC2xC8φ: trivial image192(C4xDic3).24C4192,657

׿
x
:
Z
F
o
wr
Q
<