Extensions 1→N→G→Q→1 with N=C2xQ8 and Q=C12

Direct product G=NxQ with N=C2xQ8 and Q=C12
dρLabelID
Q8xC2xC12192Q8xC2xC12192,1405

Semidirect products G=N:Q with N=C2xQ8 and Q=C12
extensionφ:Q→Out NdρLabelID
(C2xQ8):C12 = (C2xQ8):C12φ: C12/C2C6 ⊆ Out C2xQ832(C2xQ8):C12192,998
(C2xQ8):2C12 = C3xC23.31D4φ: C12/C3C4 ⊆ Out C2xQ848(C2xQ8):2C12192,134
(C2xQ8):3C12 = C3xC42:3C4φ: C12/C3C4 ⊆ Out C2xQ8484(C2xQ8):3C12192,160
(C2xQ8):4C12 = C2xC4xSL2(F3)φ: C12/C4C3 ⊆ Out C2xQ864(C2xQ8):4C12192,996
(C2xQ8):5C12 = C3xC23.67C23φ: C12/C6C2 ⊆ Out C2xQ8192(C2xQ8):5C12192,824
(C2xQ8):6C12 = C3xC23.C23φ: C12/C6C2 ⊆ Out C2xQ8484(C2xQ8):6C12192,843
(C2xQ8):7C12 = C6xQ8:C4φ: C12/C6C2 ⊆ Out C2xQ8192(C2xQ8):7C12192,848
(C2xQ8):8C12 = C3xC23.38D4φ: C12/C6C2 ⊆ Out C2xQ896(C2xQ8):8C12192,852
(C2xQ8):9C12 = C6xC4wrC2φ: C12/C6C2 ⊆ Out C2xQ848(C2xQ8):9C12192,853
(C2xQ8):10C12 = C3xC42:C22φ: C12/C6C2 ⊆ Out C2xQ8484(C2xQ8):10C12192,854
(C2xQ8):11C12 = C3xC23.32C23φ: C12/C6C2 ⊆ Out C2xQ896(C2xQ8):11C12192,1408

Non-split extensions G=N.Q with N=C2xQ8 and Q=C12
extensionφ:Q→Out NdρLabelID
(C2xQ8).C12 = M4(2).A4φ: C12/C2C6 ⊆ Out C2xQ8324(C2xQ8).C12192,1013
(C2xQ8).2C12 = C3xC42.C22φ: C12/C3C4 ⊆ Out C2xQ896(C2xQ8).2C12192,135
(C2xQ8).3C12 = C3xC4.6Q16φ: C12/C3C4 ⊆ Out C2xQ8192(C2xQ8).3C12192,139
(C2xQ8).4C12 = C3xC42.3C4φ: C12/C3C4 ⊆ Out C2xQ8484(C2xQ8).4C12192,162
(C2xQ8).5C12 = C8xSL2(F3)φ: C12/C4C3 ⊆ Out C2xQ864(C2xQ8).5C12192,200
(C2xQ8).6C12 = C2xC8.A4φ: C12/C4C3 ⊆ Out C2xQ864(C2xQ8).6C12192,1012
(C2xQ8).7C12 = C3xQ8:C8φ: C12/C6C2 ⊆ Out C2xQ8192(C2xQ8).7C12192,132
(C2xQ8).8C12 = C3x(C22xC8):C2φ: C12/C6C2 ⊆ Out C2xQ896(C2xQ8).8C12192,841
(C2xQ8).9C12 = C6xC4.10D4φ: C12/C6C2 ⊆ Out C2xQ896(C2xQ8).9C12192,845
(C2xQ8).10C12 = C3xC8:4Q8φ: C12/C6C2 ⊆ Out C2xQ8192(C2xQ8).10C12192,879
(C2xQ8).11C12 = C3xQ8oM4(2)φ: C12/C6C2 ⊆ Out C2xQ8484(C2xQ8).11C12192,1457
(C2xQ8).12C12 = Q8xC24φ: trivial image192(C2xQ8).12C12192,878
(C2xQ8).13C12 = C6xC8oD4φ: trivial image96(C2xQ8).13C12192,1456

׿
x
:
Z
F
o
wr
Q
<