Extensions 1→N→G→Q→1 with N=S3xC4oD4 and Q=C2

Direct product G=NxQ with N=S3xC4oD4 and Q=C2
dρLabelID
C2xS3xC4oD448C2xS3xC4oD4192,1520

Semidirect products G=N:Q with N=S3xC4oD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC4oD4):1C2 = S3xC4oD8φ: C2/C1C2 ⊆ Out S3xC4oD4484(S3xC4oD4):1C2192,1326
(S3xC4oD4):2C2 = SD16:D6φ: C2/C1C2 ⊆ Out S3xC4oD4484(S3xC4oD4):2C2192,1327
(S3xC4oD4):3C2 = S3xC8:C22φ: C2/C1C2 ⊆ Out S3xC4oD4248+(S3xC4oD4):3C2192,1331
(S3xC4oD4):4C2 = D8:4D6φ: C2/C1C2 ⊆ Out S3xC4oD4488-(S3xC4oD4):4C2192,1332
(S3xC4oD4):5C2 = D24:C22φ: C2/C1C2 ⊆ Out S3xC4oD4488+(S3xC4oD4):5C2192,1336
(S3xC4oD4):6C2 = C6.C25φ: C2/C1C2 ⊆ Out S3xC4oD4484(S3xC4oD4):6C2192,1523
(S3xC4oD4):7C2 = S3x2+ 1+4φ: C2/C1C2 ⊆ Out S3xC4oD4248+(S3xC4oD4):7C2192,1524
(S3xC4oD4):8C2 = D6.C24φ: C2/C1C2 ⊆ Out S3xC4oD4488-(S3xC4oD4):8C2192,1525
(S3xC4oD4):9C2 = S3x2- 1+4φ: C2/C1C2 ⊆ Out S3xC4oD4488-(S3xC4oD4):9C2192,1526
(S3xC4oD4):10C2 = D12.39C23φ: C2/C1C2 ⊆ Out S3xC4oD4488+(S3xC4oD4):10C2192,1527

Non-split extensions G=N.Q with N=S3xC4oD4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC4oD4).1C2 = S3xC4wrC2φ: C2/C1C2 ⊆ Out S3xC4oD4244(S3xC4oD4).1C2192,379
(S3xC4oD4).2C2 = C42:3D6φ: C2/C1C2 ⊆ Out S3xC4oD4484(S3xC4oD4).2C2192,380
(S3xC4oD4).3C2 = M4(2):28D6φ: C2/C1C2 ⊆ Out S3xC4oD4484(S3xC4oD4).3C2192,1309
(S3xC4oD4).4C2 = S3xC8.C22φ: C2/C1C2 ⊆ Out S3xC4oD4488-(S3xC4oD4).4C2192,1335
(S3xC4oD4).5C2 = S3xC8oD4φ: trivial image484(S3xC4oD4).5C2192,1308

׿
x
:
Z
F
o
wr
Q
<