extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC24).1C4 = C12.15C42 | φ: C4/C1 → C4 ⊆ Aut C2xC24 | 48 | 4 | (C2xC24).1C4 | 192,25 |
(C2xC24).2C4 = C24.D4 | φ: C4/C1 → C4 ⊆ Aut C2xC24 | 48 | 4 | (C2xC24).2C4 | 192,112 |
(C2xC24).3C4 = C12.21C42 | φ: C4/C1 → C4 ⊆ Aut C2xC24 | 48 | 4 | (C2xC24).3C4 | 192,119 |
(C2xC24).4C4 = C3xC4.10C42 | φ: C4/C1 → C4 ⊆ Aut C2xC24 | 48 | 4 | (C2xC24).4C4 | 192,144 |
(C2xC24).5C4 = C3xC16:C4 | φ: C4/C1 → C4 ⊆ Aut C2xC24 | 48 | 4 | (C2xC24).5C4 | 192,153 |
(C2xC24).6C4 = C3xC23.C8 | φ: C4/C1 → C4 ⊆ Aut C2xC24 | 48 | 4 | (C2xC24).6C4 | 192,155 |
(C2xC24).7C4 = C42.279D6 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).7C4 | 192,13 |
(C2xC24).8C4 = C24:2C8 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).8C4 | 192,16 |
(C2xC24).9C4 = C24:1C8 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).9C4 | 192,17 |
(C2xC24).10C4 = C12:C16 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).10C4 | 192,21 |
(C2xC24).11C4 = C24.98D4 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).11C4 | 192,108 |
(C2xC24).12C4 = C12.10C42 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).12C4 | 192,111 |
(C2xC24).13C4 = C3xC8:2C8 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).13C4 | 192,140 |
(C2xC24).14C4 = C3xC8:1C8 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).14C4 | 192,141 |
(C2xC24).15C4 = C3xC4.C42 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).15C4 | 192,147 |
(C2xC24).16C4 = C3xC22:C16 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).16C4 | 192,154 |
(C2xC24).17C4 = C3xC4:C16 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).17C4 | 192,169 |
(C2xC24).18C4 = C24.1C8 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 48 | 2 | (C2xC24).18C4 | 192,22 |
(C2xC24).19C4 = C2xC24.C4 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).19C4 | 192,666 |
(C2xC24).20C4 = C3xC8.C8 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 48 | 2 | (C2xC24).20C4 | 192,170 |
(C2xC24).21C4 = C8xC3:C8 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).21C4 | 192,12 |
(C2xC24).22C4 = C24:C8 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).22C4 | 192,14 |
(C2xC24).23C4 = C4xC3:C16 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).23C4 | 192,19 |
(C2xC24).24C4 = C24.C8 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).24C4 | 192,20 |
(C2xC24).25C4 = C2xC3:C32 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).25C4 | 192,57 |
(C2xC24).26C4 = C3:M6(2) | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 96 | 2 | (C2xC24).26C4 | 192,58 |
(C2xC24).27C4 = C22xC3:C16 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).27C4 | 192,655 |
(C2xC24).28C4 = C2xC12.C8 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).28C4 | 192,656 |
(C2xC24).29C4 = C6xC8.C4 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).29C4 | 192,862 |
(C2xC24).30C4 = C3xC8:C8 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).30C4 | 192,128 |
(C2xC24).31C4 = C3xC16:5C4 | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 192 | | (C2xC24).31C4 | 192,152 |
(C2xC24).32C4 = C3xM6(2) | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 96 | 2 | (C2xC24).32C4 | 192,176 |
(C2xC24).33C4 = C6xM5(2) | φ: C4/C2 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).33C4 | 192,936 |