Extensions 1→N→G→Q→1 with N=C4xD4 and Q=S3

Direct product G=NxQ with N=C4xD4 and Q=S3
dρLabelID
C4xS3xD448C4xS3xD4192,1103

Semidirect products G=N:Q with N=C4xD4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4xD4):1S3 = C4xD4:S3φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):1S3192,572
(C4xD4):2S3 = C42.48D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):2S3192,573
(C4xD4):3S3 = C12:7D8φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):3S3192,574
(C4xD4):4S3 = D4.1D12φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):4S3192,575
(C4xD4):5S3 = C42.102D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):5S3192,1097
(C4xD4):6S3 = C42.104D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):6S3192,1099
(C4xD4):7S3 = C42:13D6φ: S3/C3C2 ⊆ Out C4xD448(C4xD4):7S3192,1104
(C4xD4):8S3 = C42.108D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):8S3192,1105
(C4xD4):9S3 = C42:14D6φ: S3/C3C2 ⊆ Out C4xD448(C4xD4):9S3192,1106
(C4xD4):10S3 = C42.228D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):10S3192,1107
(C4xD4):11S3 = D4xD12φ: S3/C3C2 ⊆ Out C4xD448(C4xD4):11S3192,1108
(C4xD4):12S3 = D12:23D4φ: S3/C3C2 ⊆ Out C4xD448(C4xD4):12S3192,1109
(C4xD4):13S3 = D12:24D4φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):13S3192,1110
(C4xD4):14S3 = Dic6:23D4φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):14S3192,1111
(C4xD4):15S3 = Dic6:24D4φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):15S3192,1112
(C4xD4):16S3 = D4:5D12φ: S3/C3C2 ⊆ Out C4xD448(C4xD4):16S3192,1113
(C4xD4):17S3 = D4:6D12φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):17S3192,1114
(C4xD4):18S3 = C42:18D6φ: S3/C3C2 ⊆ Out C4xD448(C4xD4):18S3192,1115
(C4xD4):19S3 = C42.229D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):19S3192,1116
(C4xD4):20S3 = C42.113D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):20S3192,1117
(C4xD4):21S3 = C42.114D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):21S3192,1118
(C4xD4):22S3 = C42:19D6φ: S3/C3C2 ⊆ Out C4xD448(C4xD4):22S3192,1119
(C4xD4):23S3 = C42.115D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):23S3192,1120
(C4xD4):24S3 = C42.116D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):24S3192,1121
(C4xD4):25S3 = C42.117D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):25S3192,1122
(C4xD4):26S3 = C42.118D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):26S3192,1123
(C4xD4):27S3 = C42.119D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4):27S3192,1124
(C4xD4):28S3 = C4xD4:2S3φ: trivial image96(C4xD4):28S3192,1095

Non-split extensions G=N.Q with N=C4xD4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4xD4).1S3 = C12.57D8φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).1S3192,93
(C4xD4).2S3 = C12.50D8φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).2S3192,566
(C4xD4).3S3 = C12.38SD16φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).3S3192,567
(C4xD4).4S3 = D4.3Dic6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).4S3192,568
(C4xD4).5S3 = C42.47D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).5S3192,570
(C4xD4).6S3 = C12:3M4(2)φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).6S3192,571
(C4xD4).7S3 = C4xD4.S3φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).7S3192,576
(C4xD4).8S3 = C42.51D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).8S3192,577
(C4xD4).9S3 = D4.2D12φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).9S3192,578
(C4xD4).10S3 = D4xDic6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).10S3192,1096
(C4xD4).11S3 = D4:5Dic6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).11S3192,1098
(C4xD4).12S3 = C42.105D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).12S3192,1100
(C4xD4).13S3 = C42.106D6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).13S3192,1101
(C4xD4).14S3 = D4:6Dic6φ: S3/C3C2 ⊆ Out C4xD496(C4xD4).14S3192,1102
(C4xD4).15S3 = D4xC3:C8φ: trivial image96(C4xD4).15S3192,569

׿
x
:
Z
F
o
wr
Q
<