Extensions 1→N→G→Q→1 with N=C2xDic6 and Q=C4

Direct product G=NxQ with N=C2xDic6 and Q=C4
dρLabelID
C2xC4xDic6192C2xC4xDic6192,1026

Semidirect products G=N:Q with N=C2xDic6 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xDic6):1C4 = C4:Dic3:C4φ: C4/C1C4 ⊆ Out C2xDic648(C2xDic6):1C4192,11
(C2xDic6):2C4 = C23.35D12φ: C4/C1C4 ⊆ Out C2xDic648(C2xDic6):2C4192,26
(C2xDic6):3C4 = C23.D12φ: C4/C1C4 ⊆ Out C2xDic6488-(C2xDic6):3C4192,32
(C2xDic6):4C4 = C23:C4:5S3φ: C4/C1C4 ⊆ Out C2xDic6488-(C2xDic6):4C4192,299
(C2xDic6):5C4 = (C2xC12):Q8φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6):5C4192,205
(C2xDic6):6C4 = C2xC42:4S3φ: C4/C2C2 ⊆ Out C2xDic648(C2xDic6):6C4192,486
(C2xDic6):7C4 = (C2xDic6):7C4φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6):7C4192,488
(C2xDic6):8C4 = C2xC2.Dic12φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6):8C4192,662
(C2xDic6):9C4 = C2xC6.SD16φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6):9C4192,528
(C2xDic6):10C4 = C4.(D6:C4)φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6):10C4192,532
(C2xDic6):11C4 = C4:C4.237D6φ: C4/C2C2 ⊆ Out C2xDic696(C2xDic6):11C4192,563
(C2xDic6):12C4 = C42:6D6φ: C4/C2C2 ⊆ Out C2xDic6484(C2xDic6):12C4192,564
(C2xDic6):13C4 = (C2xD12):13C4φ: C4/C2C2 ⊆ Out C2xDic6484(C2xDic6):13C4192,565
(C2xDic6):14C4 = C23.51D12φ: C4/C2C2 ⊆ Out C2xDic696(C2xDic6):14C4192,679
(C2xDic6):15C4 = C2xD12:C4φ: C4/C2C2 ⊆ Out C2xDic648(C2xDic6):15C4192,697
(C2xDic6):16C4 = M4(2):24D6φ: C4/C2C2 ⊆ Out C2xDic6484(C2xDic6):16C4192,698
(C2xDic6):17C4 = C2xDic6:C4φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6):17C4192,1055
(C2xDic6):18C4 = C42.87D6φ: C4/C2C2 ⊆ Out C2xDic696(C2xDic6):18C4192,1075

Non-split extensions G=N.Q with N=C2xDic6 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xDic6).1C4 = C42.D6φ: C4/C1C4 ⊆ Out C2xDic696(C2xDic6).1C4192,23
(C2xDic6).2C4 = C4.Dic12φ: C4/C1C4 ⊆ Out C2xDic6192(C2xDic6).2C4192,40
(C2xDic6).3C4 = (C2xC12).D4φ: C4/C1C4 ⊆ Out C2xDic6488-(C2xDic6).3C4192,37
(C2xDic6).4C4 = S3xC4.10D4φ: C4/C1C4 ⊆ Out C2xDic6488-(C2xDic6).4C4192,309
(C2xDic6).5C4 = C4.8Dic12φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6).5C4192,15
(C2xDic6).6C4 = C24:12Q8φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6).6C4192,238
(C2xDic6).7C4 = C24:Q8φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6).7C4192,260
(C2xDic6).8C4 = D6:C8:C2φ: C4/C2C2 ⊆ Out C2xDic696(C2xDic6).8C4192,286
(C2xDic6).9C4 = C42.27D6φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6).9C4192,387
(C2xDic6).10C4 = (C22xC8):7S3φ: C4/C2C2 ⊆ Out C2xDic696(C2xDic6).10C4192,669
(C2xDic6).11C4 = Dic6:2C8φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6).11C4192,43
(C2xDic6).12C4 = Dic6:C8φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6).12C4192,389
(C2xDic6).13C4 = C42.198D6φ: C4/C2C2 ⊆ Out C2xDic6192(C2xDic6).13C4192,390
(C2xDic6).14C4 = D6:C8:40C2φ: C4/C2C2 ⊆ Out C2xDic696(C2xDic6).14C4192,688
(C2xDic6).15C4 = C2xC12.47D4φ: C4/C2C2 ⊆ Out C2xDic696(C2xDic6).15C4192,695
(C2xDic6).16C4 = C2xD12.C4φ: C4/C2C2 ⊆ Out C2xDic696(C2xDic6).16C4192,1303
(C2xDic6).17C4 = M4(2):26D6φ: C4/C2C2 ⊆ Out C2xDic6484(C2xDic6).17C4192,1304
(C2xDic6).18C4 = C8xDic6φ: trivial image192(C2xDic6).18C4192,237
(C2xDic6).19C4 = C2xC8oD12φ: trivial image96(C2xDic6).19C4192,1297

׿
x
:
Z
F
o
wr
Q
<