Extensions 1→N→G→Q→1 with N=C2 and Q=D4xDic3

Direct product G=NxQ with N=C2 and Q=D4xDic3
dρLabelID
C2xD4xDic396C2xD4xDic3192,1354


Non-split extensions G=N.Q with N=C2 and Q=D4xDic3
extensionφ:Q→Aut NdρLabelID
C2.1(D4xDic3) = Dic3xC22:C4central extension (φ=1)96C2.1(D4xDic3)192,500
C2.2(D4xDic3) = Dic3xC4:C4central extension (φ=1)192C2.2(D4xDic3)192,533
C2.3(D4xDic3) = D4xC3:C8central extension (φ=1)96C2.3(D4xDic3)192,569
C2.4(D4xDic3) = C24.58D6central stem extension (φ=1)96C2.4(D4xDic3)192,509
C2.5(D4xDic3) = C24.19D6central stem extension (φ=1)96C2.5(D4xDic3)192,510
C2.6(D4xDic3) = C4:C4:5Dic3central stem extension (φ=1)192C2.6(D4xDic3)192,539
C2.7(D4xDic3) = C4:C4:6Dic3central stem extension (φ=1)192C2.7(D4xDic3)192,543
C2.8(D4xDic3) = C42.47D6central stem extension (φ=1)96C2.8(D4xDic3)192,570
C2.9(D4xDic3) = C12:3M4(2)central stem extension (φ=1)96C2.9(D4xDic3)192,571
C2.10(D4xDic3) = Dic3xD8central stem extension (φ=1)96C2.10(D4xDic3)192,708
C2.11(D4xDic3) = D8:Dic3central stem extension (φ=1)96C2.11(D4xDic3)192,711
C2.12(D4xDic3) = Dic3xSD16central stem extension (φ=1)96C2.12(D4xDic3)192,720
C2.13(D4xDic3) = SD16:Dic3central stem extension (φ=1)96C2.13(D4xDic3)192,723
C2.14(D4xDic3) = Dic3xQ16central stem extension (φ=1)192C2.14(D4xDic3)192,740
C2.15(D4xDic3) = Q16:Dic3central stem extension (φ=1)192C2.15(D4xDic3)192,743
C2.16(D4xDic3) = D8:5Dic3central stem extension (φ=1)484C2.16(D4xDic3)192,755
C2.17(D4xDic3) = D8:4Dic3central stem extension (φ=1)484C2.17(D4xDic3)192,756
C2.18(D4xDic3) = C24.29D6central stem extension (φ=1)96C2.18(D4xDic3)192,779
C2.19(D4xDic3) = C24.30D6central stem extension (φ=1)96C2.19(D4xDic3)192,780

׿
x
:
Z
F
o
wr
Q
<