Extensions 1→N→G→Q→1 with N=C2xC4oD4 and Q=S3

Direct product G=NxQ with N=C2xC4oD4 and Q=S3
dρLabelID
C2xS3xC4oD448C2xS3xC4oD4192,1520

Semidirect products G=N:Q with N=C2xC4oD4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2xC4oD4):1S3 = SL2(F3):D4φ: S3/C1S3 ⊆ Out C2xC4oD432(C2xC4oD4):1S3192,986
(C2xC4oD4):2S3 = C2xC4.6S4φ: S3/C1S3 ⊆ Out C2xC4oD432(C2xC4oD4):2S3192,1480
(C2xC4oD4):3S3 = C2xC4.3S4φ: S3/C1S3 ⊆ Out C2xC4oD432(C2xC4oD4):3S3192,1481
(C2xC4oD4):4S3 = GL2(F3):C22φ: S3/C1S3 ⊆ Out C2xC4oD4324(C2xC4oD4):4S3192,1482
(C2xC4oD4):5S3 = (C3xD4):14D4φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4):5S3192,797
(C2xC4oD4):6S3 = C2xD4:D6φ: S3/C3C2 ⊆ Out C2xC4oD448(C2xC4oD4):6S3192,1379
(C2xC4oD4):7S3 = C2xQ8.13D6φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4):7S3192,1380
(C2xC4oD4):8S3 = C12.C24φ: S3/C3C2 ⊆ Out C2xC4oD4484(C2xC4oD4):8S3192,1381
(C2xC4oD4):9S3 = C6.1042- 1+4φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4):9S3192,1383
(C2xC4oD4):10S3 = (C2xD4):43D6φ: S3/C3C2 ⊆ Out C2xC4oD448(C2xC4oD4):10S3192,1387
(C2xC4oD4):11S3 = C6.1452+ 1+4φ: S3/C3C2 ⊆ Out C2xC4oD448(C2xC4oD4):11S3192,1388
(C2xC4oD4):12S3 = C6.1462+ 1+4φ: S3/C3C2 ⊆ Out C2xC4oD448(C2xC4oD4):12S3192,1389
(C2xC4oD4):13S3 = C6.1072- 1+4φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4):13S3192,1390
(C2xC4oD4):14S3 = (C2xC12):17D4φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4):14S3192,1391
(C2xC4oD4):15S3 = C6.1082- 1+4φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4):15S3192,1392
(C2xC4oD4):16S3 = C6.1482+ 1+4φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4):16S3192,1393
(C2xC4oD4):17S3 = C2xD4oD12φ: S3/C3C2 ⊆ Out C2xC4oD448(C2xC4oD4):17S3192,1521
(C2xC4oD4):18S3 = C2xQ8oD12φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4):18S3192,1522
(C2xC4oD4):19S3 = C6.C25φ: S3/C3C2 ⊆ Out C2xC4oD4484(C2xC4oD4):19S3192,1523

Non-split extensions G=N.Q with N=C2xC4oD4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2xC4oD4).1S3 = C2xU2(F3)φ: S3/C1S3 ⊆ Out C2xC4oD448(C2xC4oD4).1S3192,981
(C2xC4oD4).2S3 = U2(F3):C2φ: S3/C1S3 ⊆ Out C2xC4oD4324(C2xC4oD4).2S3192,982
(C2xC4oD4).3S3 = C4.A4:C4φ: S3/C1S3 ⊆ Out C2xC4oD464(C2xC4oD4).3S3192,983
(C2xC4oD4).4S3 = SL2(F3).D4φ: S3/C1S3 ⊆ Out C2xC4oD464(C2xC4oD4).4S3192,984
(C2xC4oD4).5S3 = (C2xC4).S4φ: S3/C1S3 ⊆ Out C2xC4oD464(C2xC4oD4).5S3192,985
(C2xC4oD4).6S3 = C2xC4.S4φ: S3/C1S3 ⊆ Out C2xC4oD464(C2xC4oD4).6S3192,1479
(C2xC4oD4).7S3 = C4oD4:3Dic3φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4).7S3192,791
(C2xC4oD4).8S3 = C4oD4:4Dic3φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4).8S3192,792
(C2xC4oD4).9S3 = (C6xD4).11C4φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4).9S3192,793
(C2xC4oD4).10S3 = C2xQ8:3Dic3φ: S3/C3C2 ⊆ Out C2xC4oD448(C2xC4oD4).10S3192,794
(C2xC4oD4).11S3 = (C6xD4):9C4φ: S3/C3C2 ⊆ Out C2xC4oD4484(C2xC4oD4).11S3192,795
(C2xC4oD4).12S3 = (C6xD4).16C4φ: S3/C3C2 ⊆ Out C2xC4oD4484(C2xC4oD4).12S3192,796
(C2xC4oD4).13S3 = (C3xD4).32D4φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4).13S3192,798
(C2xC4oD4).14S3 = (C6xD4):10C4φ: S3/C3C2 ⊆ Out C2xC4oD4484(C2xC4oD4).14S3192,799
(C2xC4oD4).15S3 = C12.76C24φ: S3/C3C2 ⊆ Out C2xC4oD4484(C2xC4oD4).15S3192,1378
(C2xC4oD4).16S3 = C2xQ8.14D6φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4).16S3192,1382
(C2xC4oD4).17S3 = C6.1052- 1+4φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4).17S3192,1384
(C2xC4oD4).18S3 = C6.1442+ 1+4φ: S3/C3C2 ⊆ Out C2xC4oD496(C2xC4oD4).18S3192,1386
(C2xC4oD4).19S3 = C2xD4.Dic3φ: trivial image96(C2xC4oD4).19S3192,1377
(C2xC4oD4).20S3 = Dic3xC4oD4φ: trivial image96(C2xC4oD4).20S3192,1385

׿
x
:
Z
F
o
wr
Q
<