Extensions 1→N→G→Q→1 with N=S3xC16 and Q=C2

Direct product G=NxQ with N=S3xC16 and Q=C2
dρLabelID
S3xC2xC1696S3xC2xC16192,458

Semidirect products G=N:Q with N=S3xC16 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC16):1C2 = S3xD16φ: C2/C1C2 ⊆ Out S3xC16484+(S3xC16):1C2192,469
(S3xC16):2C2 = D16:3S3φ: C2/C1C2 ⊆ Out S3xC16964-(S3xC16):2C2192,471
(S3xC16):3C2 = D48:5C2φ: C2/C1C2 ⊆ Out S3xC16964+(S3xC16):3C2192,478
(S3xC16):4C2 = S3xSD32φ: C2/C1C2 ⊆ Out S3xC16484(S3xC16):4C2192,472
(S3xC16):5C2 = D6.2D8φ: C2/C1C2 ⊆ Out S3xC16964(S3xC16):5C2192,475
(S3xC16):6C2 = D12.4C8φ: C2/C1C2 ⊆ Out S3xC16962(S3xC16):6C2192,460
(S3xC16):7C2 = S3xM5(2)φ: C2/C1C2 ⊆ Out S3xC16484(S3xC16):7C2192,465
(S3xC16):8C2 = C16.12D6φ: C2/C1C2 ⊆ Out S3xC16964(S3xC16):8C2192,466

Non-split extensions G=N.Q with N=S3xC16 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC16).1C2 = S3xQ32φ: C2/C1C2 ⊆ Out S3xC16964-(S3xC16).1C2192,476
(S3xC16).2C2 = C96:C2φ: C2/C1C2 ⊆ Out S3xC16962(S3xC16).2C2192,6
(S3xC16).3C2 = S3xC32φ: trivial image962(S3xC16).3C2192,5

׿
x
:
Z
F
o
wr
Q
<