Extensions 1→N→G→Q→1 with N=C4 and Q=C8:S3

Direct product G=NxQ with N=C4 and Q=C8:S3
dρLabelID
C4xC8:S396C4xC8:S3192,246

Semidirect products G=N:Q with N=C4 and Q=C8:S3
extensionφ:Q→Aut NdρLabelID
C4:1(C8:S3) = C12:2M4(2)φ: C8:S3/C3:C8C2 ⊆ Aut C496C4:1(C8:S3)192,397
C4:2(C8:S3) = C8:6D12φ: C8:S3/C24C2 ⊆ Aut C496C4:2(C8:S3)192,247
C4:3(C8:S3) = C12:M4(2)φ: C8:S3/C4xS3C2 ⊆ Aut C496C4:3(C8:S3)192,396

Non-split extensions G=N.Q with N=C4 and Q=C8:S3
extensionφ:Q→Aut NdρLabelID
C4.1(C8:S3) = D12:2C8φ: C8:S3/C3:C8C2 ⊆ Aut C496C4.1(C8:S3)192,42
C4.2(C8:S3) = Dic6:2C8φ: C8:S3/C3:C8C2 ⊆ Aut C4192C4.2(C8:S3)192,43
C4.3(C8:S3) = C42.198D6φ: C8:S3/C3:C8C2 ⊆ Aut C4192C4.3(C8:S3)192,390
C4.4(C8:S3) = C4.8Dic12φ: C8:S3/C24C2 ⊆ Aut C4192C4.4(C8:S3)192,15
C4.5(C8:S3) = C4.17D24φ: C8:S3/C24C2 ⊆ Aut C496C4.5(C8:S3)192,18
C4.6(C8:S3) = C24:12Q8φ: C8:S3/C24C2 ⊆ Aut C4192C4.6(C8:S3)192,238
C4.7(C8:S3) = C12.53D8φ: C8:S3/C4xS3C2 ⊆ Aut C4192C4.7(C8:S3)192,38
C4.8(C8:S3) = C12.39SD16φ: C8:S3/C4xS3C2 ⊆ Aut C4192C4.8(C8:S3)192,39
C4.9(C8:S3) = C48:C4φ: C8:S3/C4xS3C2 ⊆ Aut C4484C4.9(C8:S3)192,71
C4.10(C8:S3) = C8.25D12φ: C8:S3/C4xS3C2 ⊆ Aut C4484C4.10(C8:S3)192,73
C4.11(C8:S3) = C42.202D6φ: C8:S3/C4xS3C2 ⊆ Aut C496C4.11(C8:S3)192,394
C4.12(C8:S3) = C42.279D6central extension (φ=1)192C4.12(C8:S3)192,13
C4.13(C8:S3) = C24:C8central extension (φ=1)192C4.13(C8:S3)192,14
C4.14(C8:S3) = Dic3:C16central extension (φ=1)192C4.14(C8:S3)192,60
C4.15(C8:S3) = D6:C16central extension (φ=1)96C4.15(C8:S3)192,66
C4.16(C8:S3) = C42.282D6central extension (φ=1)96C4.16(C8:S3)192,244

׿
x
:
Z
F
o
wr
Q
<